Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
kf_based_terrain_analysis
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iván del Pino
kf_based_terrain_analysis
Commits
dad3eae5
Commit
dad3eae5
authored
2 years ago
by
Iván del Pino
Browse files
Options
Downloads
Patches
Plain Diff
debugged!
parent
e179f81f
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
include/structs_definitions.h
+3
-3
3 additions, 3 deletions
include/structs_definitions.h
src/kf_based_terrain_analysis.cpp
+106
-49
106 additions, 49 deletions
src/kf_based_terrain_analysis.cpp
with
109 additions
and
52 deletions
include/structs_definitions.h
+
3
−
3
View file @
dad3eae5
...
...
@@ -22,7 +22,7 @@ const int DATA_N_3_Z_VARIANCE = 3;
const
int
DATA_C_0_RGB_CAST_INTO_FLOAT
=
0
;
const
int
DATA_C_1_ID_CLASS
=
1
;
const
int
DATA_C_2_INDEX_OF_GROUND_REF_THAT_MADE_THE_LABEL
=
2
;
const
int
DATA_C_2_INDEX_OF_GROUND_REF_THAT_MADE_THE_LABEL
=
2
;
// only used in elevation cloud
const
int
DATA_C_3_ORIGINAL_INDEX
=
3
;
...
...
@@ -42,12 +42,12 @@ const int INDEX_UNKNOWN = -1;
const
float
VERTEX_CONNECTED_TO_ROOT
=
0.0
;
const
float
VERTEX_NOT_CONNECTED_TO_ROOT
=
100.0
;
const
float
UNKNOWN_MEAN
=
-
1000
000
.0
;
const
float
UNKNOWN_MEAN
=
-
1000.0
;
const
float
UNKOWN_VARIANCE
=
-
1.0
;
const
float
UNKNOWN_INTENSITY
=
-
1.0
;
const
float
UNKNOWN_PROB
=
-
1.0
;
const
float
UNKNOWN_Z_GROUND
=
-
1000
000
.0
;
const
float
UNKNOWN_Z_GROUND
=
-
1000.0
;
const
int
KITTI_NUMBER_OF_PRECISION_RECALL_INTERVALES
=
40
;
...
...
This diff is collapsed.
Click to expand it.
src/kf_based_terrain_analysis.cpp
+
106
−
49
View file @
dad3eae5
...
...
@@ -755,7 +755,7 @@ void CKf_Based_Terrain_Analysis::fastGenerateElevationCloud(
for
(
int
i
=
0
;
i
<
elevation_cell_vector
.
size
();
++
i
)
{
pcl
::
PointXYZRGBNormal
elevation_cloud_point
=
elevation_cell_vector
[
i
].
lowest_point_in_cell
;
if
(
elevation_cloud_point
.
data_c
[
DATA_C_1_ID_CLASS
]
==
OUTLIER
)
if
((
int
)
std
::
floor
(
elevation_cloud_point
.
data_c
[
DATA_C_1_ID_CLASS
]
)
==
OUTLIER
)
{
elevation_cloud_point
.
r
=
R_CLASS_OUTLIER
;
elevation_cloud_point
.
g
=
G_CLASS_OUTLIER
;
...
...
@@ -767,7 +767,7 @@ void CKf_Based_Terrain_Analysis::fastGenerateElevationCloud(
elevation_cloud_point
.
g
=
G_CLASS_UNKNOWN
;
elevation_cloud_point
.
b
=
B_CLASS_UNKNOWN
;
}
// TODO: check this!
float
sum
=
std
::
accumulate
(
elevation_cell_vector
[
i
].
z_coordinates
.
begin
(),
elevation_cell_vector
[
i
].
z_coordinates
.
end
(),
0.0
);
float
z_mean
=
sum
/
(
float
)
elevation_cell_vector
[
i
].
z_coordinates
.
size
();
...
...
@@ -986,11 +986,14 @@ void CKf_Based_Terrain_Analysis::fastLabelPointcloudUsingGroundModel(
{
pcl
::
PointXYZRGBNormal
point_in_sensor_frame
=
*
i
;
// We pick the reference that made the best prediction for this point in the elevation cloud
int
reference_index
=
(
int
)
std
::
floor
(
point_in_sensor_frame
.
data_c
[
DATA_C_2_INDEX_OF_GROUND_REF_THAT_MADE_THE_LABEL
]);
if
(
reference_index
!=
INDEX_UNKNOWN
)
{
// If this point in the elevation cloud has been labeled by a reference, we extract the reference to
// check the Mahalanobis distance and make the actual labeling of the original point cloud
pcl
::
PointXYZRGBNormal
reference_in_sensor_frame
=
ground_reference_cloud_ptr
->
points
[
reference_index
];
// 1) We point to the vector of indices related to the elevation_cloud point under evaluation
...
...
@@ -1001,35 +1004,52 @@ void CKf_Based_Terrain_Analysis::fastLabelPointcloudUsingGroundModel(
for
(
std
::
vector
<
int
>::
const_iterator
point_iterator
=
index_iterator
->
begin
();
point_iterator
!=
index_iterator
->
end
();
++
point_iterator
)
{
float
mahalanobis_distance
=
mahalanobisDistance
(
reference_in_sensor_frame
,
pcl_cloud_ptr
->
points
[
*
point_iterator
]);
// if (std::isnan(mahalanobis_distance))
// {
// std::cout << "posterior pred sigma = " << prediction_std_dev << " uncertainty = "
// << prediction_std_dev * filtering_configuration.mahalanobis_threshold << " mahalanobis distance = "
// << mahalanobis_distance << std::endl;
//
// std::getchar();
// }
// We now copy the data that is common to every point in the vector (because are statistics extracted
// from the points in the vector)
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_c
[
DATA_C_2_MEAN_INTENSITY
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_0_INTENSITY
];
// in data_n[0] we have the point intensity, so nothing to change
// in data_n[1] we will store the intensity variance in the elevation cloud cell
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_1_INTENSITY_VARIANCE
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_1_INTENSITY_VARIANCE
];
// in data_n[2] we store the mean z value in the elevation cell
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_2_Z_MEAN
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_2_Z_MEAN
];
// in data_n[3] we store the z variance in the elevation cell
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_3_Z_VARIANCE
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_3_Z_VARIANCE
];
// TODO: we copy the mean intensity value in the channel reserved for the color, we do this because
// we have detected a problem with pcl conversions: when passing the point cloud through a ROS topic,
// channels c2 and c3 get corrupted, so we avoid to use them, we will investigate this problem in the
// future (hopefully)
// pcl_cloud_ptr->points[*point_iterator].data_c[DATA_C_2_MEAN_INTENSITY] =
// point_in_sensor_frame.data_n[DATA_N_0_INTENSITY];
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_c
[
DATA_C_0_RGB_CAST_INTO_FLOAT
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_0_INTENSITY
];
// std::cout << "Intensity in elevation cloud: mean = " << point_in_sensor_frame.data_n[DATA_N_0_INTENSITY]
// << " var = "
// << point_in_sensor_frame.data_n[DATA_N_1_INTENSITY_VARIANCE]
// << std::endl;
//
// std::cout << "Intensity in pcl cloud: point = "
// << pcl_cloud_ptr->points[*point_iterator].data_n[DATA_N_0_INTENSITY] << " mean = "
// << pcl_cloud_ptr->points[*point_iterator].data_c[DATA_C_2_MEAN_INTENSITY] << " var = "
// << pcl_cloud_ptr->points[*point_iterator].data_n[DATA_N_1_INTENSITY_VARIANCE] << std::endl;
// std::cout << "Intensity in pcl cloud: point = " << pcl_cloud_ptr->points[*point_iterator].data_n[DATA_N_0_INTENSITY]
// << " mean = " << pcl_cloud_ptr->points[*point_iterator].data_c[DATA_C_0_RGB_CAST_INTO_FLOAT]
// << " var = " << pcl_cloud_ptr->points[*point_iterator].data_n[DATA_N_1_INTENSITY_VARIANCE] << std::endl;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_2_Z_MEAN
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_2_Z_MEAN
];
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_3_Z_VARIANCE
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_3_Z_VARIANCE
];
// once we have all the common values stored, only rest to compute the class and score, that will be
// packaged into the data_c[1] field
float
mahalanobis_distance
=
mahalanobisDistance
(
reference_in_sensor_frame
,
pcl_cloud_ptr
->
points
[
*
point_iterator
]);
// if (std::isnan(mahalanobis_distance))
// {
// std::cout << "posterior pred sigma = " << prediction_std_dev << " uncertainty = "
// << prediction_std_dev * filtering_configuration.mahalanobis_threshold << " mahalanobis distance = "
// << mahalanobis_distance << std::endl;
//
// std::getchar();
// }
float
score
=
0.995
-
(
mahalanobis_distance
/
filtering_configuration
.
mahalanobis_threshold
);
// we use 0.995 instead of 1.0 to avoid overflowing the class field
if
(
score
<
0.0
)
...
...
@@ -1039,9 +1059,12 @@ void CKf_Based_Terrain_Analysis::fastLabelPointcloudUsingGroundModel(
if
(
score
>
filtering_configuration
.
score_threshold
)
{
pcl_cloud_ptr
->
points
[
*
point_iterator
].
r
=
R_CLASS_GROUND
;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
g
=
G_CLASS_GROUND
;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
b
=
B_CLASS_GROUND
;
// TODO: when passing the point cloud through a ROS topic,
// channels c2 and c3 get corrupted, so we avoid to use them, we are temporarily the c0 channel
// which is the one storing RGB values packed as a float, so colour is disabled at the moment
// pcl_cloud_ptr->points[*point_iterator].r = R_CLASS_GROUND;
// pcl_cloud_ptr->points[*point_iterator].g = G_CLASS_GROUND;
// pcl_cloud_ptr->points[*point_iterator].b = B_CLASS_GROUND;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_c
[
DATA_C_1_ID_CLASS
]
=
(
float
)
CLASS_GROUND
+
score
;
}
...
...
@@ -1050,11 +1073,17 @@ void CKf_Based_Terrain_Analysis::fastLabelPointcloudUsingGroundModel(
if
((
pcl_cloud_ptr
->
points
[
*
point_iterator
].
z
-
point_in_sensor_frame
.
z
)
<
filtering_configuration
.
robot_height
)
{
pcl_cloud_ptr
->
points
[
*
point_iterator
].
r
=
R_CLASS_OBSTACLE
;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
g
=
G_CLASS_OBSTACLE
;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
b
=
B_CLASS_OBSTACLE
;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_c
[
DATA_C_1_ID_CLASS
]
=
(
float
)
CLASS_OBSTACLE
+
score
;
// TODO: when passing the point cloud through a ROS topic,
// channels c2 and c3 get corrupted, so we avoid to use them, we are temporarily the c0 channel
// which is the one storing RGB values packed as a float, so colour is disabled at the moment
// pcl_cloud_ptr->points[*point_iterator].r = R_CLASS_OBSTACLE;
// pcl_cloud_ptr->points[*point_iterator].g = G_CLASS_OBSTACLE;
// pcl_cloud_ptr->points[*point_iterator].b = B_CLASS_OBSTACLE;
// We don't use score with obstacle points, if they are considered obstacles, we believe that their
// probability of being ground is zero, the class label is used to distinguish between general obstacles
// and overhanging obstacles
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_c
[
DATA_C_1_ID_CLASS
]
=
(
float
)
CLASS_OBSTACLE
+
0.0
;
// if (flag_reduce_mahalanobis_thres_if_an_obstacle_is_found)
// flag_obstacle_found = true;
...
...
@@ -1062,12 +1091,16 @@ void CKf_Based_Terrain_Analysis::fastLabelPointcloudUsingGroundModel(
else
{
//std::cout << "Overhanging obstacle detected!" << std::endl;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
r
=
R_CLASS_OVERHANGING_OBSTACLE
;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
g
=
G_CLASS_OVERHANGING_OBSTACLE
;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
b
=
B_CLASS_OVERHANGING_OBSTACLE
;
// TODO: when passing the point cloud through a ROS topic,
// channels c2 and c3 get corrupted, so we avoid to use them, we are temporarily the c0 channel
// which is the one storing RGB values packed as a float, so colour is disabled at the moment
// pcl_cloud_ptr->points[*point_iterator].r = R_CLASS_OVERHANGING_OBSTACLE;
// pcl_cloud_ptr->points[*point_iterator].g = G_CLASS_OVERHANGING_OBSTACLE;
// pcl_cloud_ptr->points[*point_iterator].b = B_CLASS_OVERHANGING_OBSTACLE;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_c
[
DATA_C_1_ID_CLASS
]
=
(
float
)
CLASS_OVERHANGING_OBSTACLE
+
score
;
+
0.0
;
}
}
}
...
...
@@ -1082,41 +1115,64 @@ void CKf_Based_Terrain_Analysis::fastLabelPointcloudUsingGroundModel(
for
(
std
::
vector
<
int
>::
const_iterator
point_iterator
=
index_iterator
->
begin
();
point_iterator
!=
index_iterator
->
end
();
++
point_iterator
)
{
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_c
[
DATA_C_2_MEAN_INTENSITY
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_0_INTENSITY
];
// We now copy the data that is common to every point in the vector (because are statistics extracted
// from the points in the vector)
// in data_n[0] we have the point intensity, so nothing to change
// in data_n[1] we will store the intensity variance in the elevation cloud cell
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_1_INTENSITY_VARIANCE
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_1_INTENSITY_VARIANCE
];
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_2_Z_MEAN
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_2_Z_MEAN
];
// in data_n[2] we store the mean z value in the elevation cell
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_2_Z_MEAN
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_2_Z_MEAN
];
// in data_n[3] we store the z variance in the elevation cell
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_3_Z_VARIANCE
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_3_Z_VARIANCE
];
// TODO: we copy the mean intensity value in the channel reserved for the color, we do this because
// we have detected a problem with pcl conversions: when passing the point cloud through a ROS topic,
// channels c2 and c3 get corrupted, so we avoid to use them, we will investigate this problem in the
// future (hopefully)
// pcl_cloud_ptr->points[*point_iterator].data_c[DATA_C_2_MEAN_INTENSITY] =
// point_in_sensor_frame.data_n[DATA_N_0_INTENSITY];
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_c
[
DATA_C_0_RGB_CAST_INTO_FLOAT
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_0_INTENSITY
];
if
((
pcl_cloud_ptr
->
points
[
*
point_iterator
].
z
-
point_in_sensor_frame
.
z
)
<
filtering_configuration
.
ground_threshold_in_not_analyzed_areas
)
{
pcl_cloud_ptr
->
points
[
*
point_iterator
].
r
=
R_CLASS_GROUND
;
// We use instead the r g b channels directly
pcl_cloud_ptr
->
points
[
*
point_iterator
].
g
=
G_CLASS_GROUND
;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
b
=
B_CLASS_GROUND
;
float
score
=
0.5
;
// we don't have too much confidence in these points, because they are not analyzed
// TODO: when passing the point cloud through a ROS topic,
// channels c2 and c3 get corrupted, so we avoid to use them, we are temporarily the c0 channel
// which is the one storing RGB values packed as a float, so colour is disabled at the moment
// pcl_cloud_ptr->points[*point_iterator].r = R_CLASS_GROUND; // We use instead the r g b channels directly
// pcl_cloud_ptr->points[*point_iterator].g = G_CLASS_GROUND;
// pcl_cloud_ptr->points[*point_iterator].b = B_CLASS_GROUND;
float
score
=
0.0
;
// we don't have too much confidence in these points, because they are not analyzed
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_c
[
DATA_C_1_ID_CLASS
]
=
(
float
)
CLASS_GROUND
+
score
;
}
else
if
((
pcl_cloud_ptr
->
points
[
*
point_iterator
].
z
-
point_in_sensor_frame
.
z
)
<
filtering_configuration
.
robot_height
)
{
pcl_cloud_ptr
->
points
[
*
point_iterator
].
r
=
R_CLASS_OBSTACLE
;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
g
=
G_CLASS_OBSTACLE
;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
b
=
B_CLASS_OBSTACLE
;
// TODO: when passing the point cloud through a ROS topic,
// channels c2 and c3 get corrupted, so we avoid to use them, we are temporarily the c0 channel
// which is the one storing RGB values packed as a float, so colour is disabled at the moment
// pcl_cloud_ptr->points[*point_iterator].r = R_CLASS_OBSTACLE;
// pcl_cloud_ptr->points[*point_iterator].g = G_CLASS_OBSTACLE;
// pcl_cloud_ptr->points[*point_iterator].b = B_CLASS_OBSTACLE;
float
score
=
0.0
;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_c
[
DATA_C_1_ID_CLASS
]
=
(
float
)
CLASS_OBSTACLE
+
score
;
}
else
{
pcl_cloud_ptr
->
points
[
*
point_iterator
].
r
=
R_CLASS_OVERHANGING_OBSTACLE
;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
g
=
G_CLASS_OVERHANGING_OBSTACLE
;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
b
=
B_CLASS_OVERHANGING_OBSTACLE
;
// TODO: when passing the point cloud through a ROS topic,
// channels c2 and c3 get corrupted, so we avoid to use them, we are temporarily the c0 channel
// which is the one storing RGB values packed as a float, so colour is disabled at the moment
// pcl_cloud_ptr->points[*point_iterator].r = R_CLASS_OVERHANGING_OBSTACLE;
// pcl_cloud_ptr->points[*point_iterator].g = G_CLASS_OVERHANGING_OBSTACLE;
// pcl_cloud_ptr->points[*point_iterator].b = B_CLASS_OVERHANGING_OBSTACLE;
float
score
=
0.0
;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_c
[
DATA_C_1_ID_CLASS
]
=
(
float
)
CLASS_OVERHANGING_OBSTACLE
...
...
@@ -1159,7 +1215,7 @@ void CKf_Based_Terrain_Analysis::groundSegmentation(
//std::cout << "Starting ground segmentation!!" << std::endl;
//std::cout << "Initializing pointcloud: Number of points in pcl_cloud = " << pcl_cloud.points.size() << std::endl;
// We copy the input in a pointer fashion (maybe it could be optimized)
// We copy the input in a pointer fashion (
TODO:
maybe it could be optimized)
pcl
::
PointCloud
<
pcl
::
PointXYZRGBNormal
>::
Ptr
pcl_cloud_ptr
(
new
pcl
::
PointCloud
<
pcl
::
PointXYZRGBNormal
>
);
*
pcl_cloud_ptr
=
pcl_cloud
;
...
...
@@ -1240,6 +1296,7 @@ void CKf_Based_Terrain_Analysis::groundSegmentation(
ground_dense_reconstruction_pcl_cloud
=
*
elevation_cloud_ptr
;
}
// (TODO: maybe it could be optimized)
ground_references_pcl_cloud
.
clear
();
ground_references_pcl_cloud
=
*
ground_reference_cloud_ptr
;
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment