Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
kf_based_terrain_analysis
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iván del Pino
kf_based_terrain_analysis
Commits
e179f81f
Commit
e179f81f
authored
2 years ago
by
Iván del Pino
Browse files
Options
Downloads
Patches
Plain Diff
more cleaning
parent
7ea32a3b
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
include/structs_definitions.h
+7
-12
7 additions, 12 deletions
include/structs_definitions.h
src/kf_based_terrain_analysis.cpp
+8
-26
8 additions, 26 deletions
src/kf_based_terrain_analysis.cpp
with
15 additions
and
38 deletions
include/structs_definitions.h
+
7
−
12
View file @
e179f81f
...
...
@@ -14,10 +14,8 @@ const float OUT_OF_RANGE = 1000.0;
const
float
MAX_RANGE
=
100.0
;
const
int
DATA_N_0_INTENSITY
=
0
;
const
int
DATA_N_1_Z_GROUND
=
1
;
const
int
DATA_N_1_ELEVATION_CLOUD_INTENSITY_VARIANCE
=
1
;
const
int
DATA_C_2_MEAN_INTENSITY
=
2
;
const
int
DATA_N_1_INTENSITY_VARIANCE
=
1
;
const
int
DATA_N_2_Z_MEAN
=
2
;
const
int
DATA_N_3_Z_VARIANCE
=
3
;
...
...
@@ -25,12 +23,9 @@ const int DATA_C_0_RGB_CAST_INTO_FLOAT = 0;
const
int
DATA_C_1_ID_CLASS
=
1
;
const
int
DATA_C_2_INDEX_OF_GROUND_REF_THAT_MADE_THE_LABEL
=
2
;
const
int
DATA_C_2_MEAN_INTENSITY
=
2
;
const
int
DATA_C_3_ORIGINAL_INDEX
=
3
;
const
int
DATA_C_2_CAR_PROB
=
2
;
// TODO: remove this
const
int
GRND_REF_DATA_C_0_RGB_CAST_INTO_FLOAT
=
0
;
const
int
GRND_REF_DATA_C_1_ROLL
=
1
;
const
int
GRND_REF_DATA_C_2_PITCH
=
2
;
...
...
@@ -47,12 +42,12 @@ const int INDEX_UNKNOWN = -1;
const
float
VERTEX_CONNECTED_TO_ROOT
=
0.0
;
const
float
VERTEX_NOT_CONNECTED_TO_ROOT
=
100.0
;
const
float
Z_VARIANCE_UNKNOWN
=
-
1
.0
;
const
float
Z_MEAN_
UNK
N
OWN
=
-
1.0
;
const
float
UNKNOWN_MEAN
=
-
1000000
.0
;
const
float
UNKOWN
_VARIANCE
=
-
1.0
;
const
float
INTENSITY
_UNKNOWN
=
-
1.0
;
const
float
PROB_
UNKNOWN
=
-
1.0
;
const
float
Z_GROUND
_UNKNOWN
=
-
1000000.0
;
const
float
UNKNOWN_
INTENSITY
=
-
1.0
;
const
float
UNKNOWN
_PROB
=
-
1.0
;
const
float
UNKNOWN_
Z_GROUND
=
-
1000000.0
;
const
int
KITTI_NUMBER_OF_PRECISION_RECALL_INTERVALES
=
40
;
...
...
This diff is collapsed.
Click to expand it.
src/kf_based_terrain_analysis.cpp
+
8
−
26
View file @
e179f81f
...
...
@@ -462,13 +462,6 @@ void CKf_Based_Terrain_Analysis::labelLocalGroundPoints(
if
((
int
)
std
::
floor
(
point_in_sensor_frame
.
data_c
[
DATA_C_1_ID_CLASS
])
!=
CLASS_GROUND
)
{
// std::cout << "Storing z point as z ground" << std::endl;
// as now the point is classified as ground, we store its own z value as z ground
// this is redundant, so we now use the data_n_1 channel to store intensity variance.
// elevation_cloud_ptr->points[point_in_sensor_frame.data_c[DATA_C_3_ORIGINAL_INDEX]].data_n[DATA_N_1_Z_GROUND] =
// elevation_cloud_ptr->points[point_in_sensor_frame.data_c[DATA_C_3_ORIGINAL_INDEX]].z;
// set the class as ground
elevation_cloud_ptr
->
points
[
point_in_sensor_frame
.
data_c
[
DATA_C_3_ORIGINAL_INDEX
]].
data_c
[
DATA_C_1_ID_CLASS
]
=
(
float
)
CLASS_GROUND
+
score
;
...
...
@@ -503,13 +496,6 @@ void CKf_Based_Terrain_Analysis::labelLocalGroundPoints(
elevation_cloud_ptr
->
points
[
point_in_sensor_frame
.
data_c
[
DATA_C_3_ORIGINAL_INDEX
]].
data_c
[
DATA_C_2_INDEX_OF_GROUND_REF_THAT_MADE_THE_LABEL
]
=
reference_index
+
score
;
//Deprecated, we now use the data_n_1 channel to store intensity variance
// // if it is an obstacle point we use the ground reference z prediction as z ground
// float z_ground = predictZ(ground_reference_cloud_ptr->points[reference_index], point_in_sensor_frame.x,
// point_in_sensor_frame.y);
// elevation_cloud_ptr->points[point_in_sensor_frame.data_c[DATA_C_3_ORIGINAL_INDEX]].data_n[DATA_N_1_Z_GROUND] =
// z_ground;
// set the class to OBSTACLE
elevation_cloud_ptr
->
points
[
point_in_sensor_frame
.
data_c
[
DATA_C_3_ORIGINAL_INDEX
]].
data_c
[
DATA_C_1_ID_CLASS
]
=
(
float
)
CLASS_OBSTACLE
+
score
;
//0.99;
...
...
@@ -806,14 +792,14 @@ void CKf_Based_Terrain_Analysis::fastGenerateElevationCloud(
// Filling remaining fields
elevation_cloud_point
.
data_n
[
DATA_N_0_INTENSITY
]
=
intensity_mean
;
elevation_cloud_point
.
data_n
[
DATA_N_1_
ELEVATION_CLOUD_
INTENSITY_VARIANCE
]
=
var_intensity
;
elevation_cloud_point
.
data_n
[
DATA_N_1_INTENSITY_VARIANCE
]
=
var_intensity
;
elevation_cloud_point
.
data_n
[
DATA_N_2_Z_MEAN
]
=
z_mean
;
elevation_cloud_point
.
data_n
[
DATA_N_3_Z_VARIANCE
]
=
var
;
elevation_cloud_point
.
data_c
[
DATA_C_2_INDEX_OF_GROUND_REF_THAT_MADE_THE_LABEL
]
=
INDEX_UNKNOWN
;
elevation_cloud_point
.
data_c
[
DATA_C_3_ORIGINAL_INDEX
]
=
i
;
//storing the index for later in labelling step
//std::cout << "Intensity of elevation point AFTER storing it: mean = " << elevation_cloud_point.data_n[DATA_N_0_INTENSITY] << " std = " << sqrt( elevation_cloud_point.data_n[DATA_N_1_
ELEVATION_CLOUD_
INTENSITY_VARIANCE]) << std::endl;
//std::cout << "Intensity of elevation point AFTER storing it: mean = " << elevation_cloud_point.data_n[DATA_N_0_INTENSITY] << " std = " << sqrt( elevation_cloud_point.data_n[DATA_N_1_INTENSITY_VARIANCE]) << std::endl;
//std::cout << "var z = " << it->data_n[DATA_N_3_Z_VARIANCE] << std::endl;
//std::cout << "elevation_cell_vector[i].z_coordinates.size() = " << z_coordinates.size() << std::endl;
...
...
@@ -1028,18 +1014,18 @@ void CKf_Based_Terrain_Analysis::fastLabelPointcloudUsingGroundModel(
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_c
[
DATA_C_2_MEAN_INTENSITY
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_0_INTENSITY
];
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_1_
ELEVATION_CLOUD_
INTENSITY_VARIANCE
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_1_
ELEVATION_CLOUD_
INTENSITY_VARIANCE
];
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_1_INTENSITY_VARIANCE
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_1_INTENSITY_VARIANCE
];
// std::cout << "Intensity in elevation cloud: mean = " << point_in_sensor_frame.data_n[DATA_N_0_INTENSITY]
// << " var = "
// << point_in_sensor_frame.data_n[DATA_N_1_
ELEVATION_CLOUD_
INTENSITY_VARIANCE]
// << point_in_sensor_frame.data_n[DATA_N_1_INTENSITY_VARIANCE]
// << std::endl;
//
// std::cout << "Intensity in pcl cloud: point = "
// << pcl_cloud_ptr->points[*point_iterator].data_n[DATA_N_0_INTENSITY] << " mean = "
// << pcl_cloud_ptr->points[*point_iterator].data_c[DATA_C_2_MEAN_INTENSITY] << " var = "
// << pcl_cloud_ptr->points[*point_iterator].data_n[DATA_N_1_
ELEVATION_CLOUD_
INTENSITY_VARIANCE] << std::endl;
// << pcl_cloud_ptr->points[*point_iterator].data_n[DATA_N_1_INTENSITY_VARIANCE] << std::endl;
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_2_Z_MEAN
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_2_Z_MEAN
];
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_3_Z_VARIANCE
]
=
...
...
@@ -1061,10 +1047,6 @@ void CKf_Based_Terrain_Analysis::fastLabelPointcloudUsingGroundModel(
}
else
{
//std::cout << "obstacle z distance from ground = " << pcl_cloud_ptr->points[*point_iterator].z - point_in_sensor_frame.z << std::endl;
//pcl_cloud_ptr->points[*point_iterator].data_n[DATA_N_1_Z_GROUND] = point_in_sensor_frame.z;
//std::cout << "obstacle z distance from ground = " << pcl_cloud_ptr->points[*point_iterator].z - point_in_sensor_frame.z << std::endl;
if
((
pcl_cloud_ptr
->
points
[
*
point_iterator
].
z
-
point_in_sensor_frame
.
z
)
<
filtering_configuration
.
robot_height
)
{
...
...
@@ -1102,8 +1084,8 @@ void CKf_Based_Terrain_Analysis::fastLabelPointcloudUsingGroundModel(
{
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_c
[
DATA_C_2_MEAN_INTENSITY
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_0_INTENSITY
];
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_1_
ELEVATION_CLOUD_
INTENSITY_VARIANCE
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_1_
ELEVATION_CLOUD_
INTENSITY_VARIANCE
];
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_1_INTENSITY_VARIANCE
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_1_INTENSITY_VARIANCE
];
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_n
[
DATA_N_2_Z_MEAN
]
=
point_in_sensor_frame
.
data_n
[
DATA_N_2_Z_MEAN
];
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment