Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
wolf
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mobile_robotics
wolf_projects
wolf_lib
wolf
Commits
ec94609a
Commit
ec94609a
authored
8 years ago
by
Jaime Tarrasó Martínez
Browse files
Options
Downloads
Patches
Plain Diff
Apply a roi based tracking in the test_tracker_ORB.cpp
parent
35a0f4d7
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/examples/test_tracker_ORB.cpp
+105
-28
105 additions, 28 deletions
src/examples/test_tracker_ORB.cpp
with
105 additions
and
28 deletions
src/examples/test_tracker_ORB.cpp
+
105
−
28
View file @
ec94609a
...
...
@@ -45,12 +45,12 @@ int main(int argc, char** argv)
unsigned
int
nfeatures
=
500
;
float
scaleFactor
=
1.2
;
unsigned
int
nlevels
=
1
;
unsigned
int
edgeThreshold
=
4
;
unsigned
int
nlevels
=
3
;
unsigned
int
edgeThreshold
=
3
;
unsigned
int
firstLevel
=
0
;
unsigned
int
WTA_K
=
2
;
//# See: http://docs.opencv.org/trunk/db/d95/classcv_1_1ORB.html#a180ae17d3300cf2c619aa240d9b607e5
unsigned
int
scoreType
=
0
;
//#enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 };
unsigned
int
patchSize
=
3
1
;
unsigned
int
patchSize
=
3
;
detector_descriptor_ptr_
=
new
cv
::
ORB
(
nfeatures
,
//
scaleFactor
,
//
...
...
@@ -93,9 +93,18 @@ int main(int argc, char** argv)
cv
::
waitKey
(
0
);
std
::
vector
<
cv
::
KeyPoint
>
target_keypoints
;
std
::
vector
<
cv
::
KeyPoint
>
current_keypoints
;
cv
::
Mat
target_descriptors
;
cv
::
Mat
current_descriptors
;
cv
::
Mat
image_roi_
=
frame
[
f
%
buffer_size
];
unsigned
int
roi_width
=
30
;
unsigned
int
roi_heigth
=
30
;
unsigned
int
roi_x
;
unsigned
int
roi_y
;
detector_descriptor_ptr_
->
detect
(
image_roi_
,
target_keypoints
);
detector_descriptor_ptr_
->
compute
(
image_roi_
,
target_keypoints
,
target_descriptors
);
...
...
@@ -104,42 +113,101 @@ int main(int argc, char** argv)
while
(
!
(
frame
[
f
%
buffer_size
].
empty
()))
{
std
::
vector
<
cv
::
KeyPoint
>
keypoints
;
cv
::
Mat
descriptors
;
cv
::
Mat
image_roi
=
frame
[
f
%
buffer_size
];
std
::
vector
<
cv
::
DMatch
>
cv_matches
;
unsigned
int
tracked_keypoints
=
0
;
detector_descriptor_ptr_
->
detect
(
image_roi
,
keypoints
);
detector_descriptor_ptr_
->
compute
(
image_roi
,
keypoints
,
descriptors
);
for
(
int
j
=
0
;
j
<
target_keypoints
.
size
();
j
++
)
{
roi_x
=
(
target_keypoints
[
j
].
pt
.
x
)
-
(
roi_heigth
/
2
);
roi_y
=
(
target_keypoints
[
j
].
pt
.
y
)
-
(
roi_width
/
2
);
cv
::
Rect
roi
(
roi_x
,
roi_y
,
roi_width
,
roi_heigth
);
//inflate
roi
.
x
=
roi
.
x
-
pattern_radius
;
roi
.
y
=
roi
.
y
-
pattern_radius
;
roi
.
width
=
roi
.
width
+
2
*
pattern_radius
;
roi
.
height
=
roi
.
height
+
2
*
pattern_radius
;
//trim
if
(
roi
.
x
<
0
)
{
int
diff_x
=
-
roi
.
x
;
roi
.
x
=
0
;
roi
.
width
=
roi
.
width
-
diff_x
;
}
if
(
roi
.
y
<
0
)
{
int
diff_y
=
-
roi
.
y
;
roi
.
y
=
0
;
roi
.
height
=
roi
.
height
-
diff_y
;
}
if
((
unsigned
int
)(
roi
.
x
+
roi
.
width
)
>
img_width
)
{
int
diff_width
=
img_width
-
(
roi
.
x
+
roi
.
width
);
roi
.
width
=
roi
.
width
+
diff_width
;
}
if
((
unsigned
int
)(
roi
.
y
+
roi
.
height
)
>
img_height
)
{
int
diff_height
=
img_height
-
(
roi
.
y
+
roi
.
height
);
roi
.
height
=
roi
.
height
+
diff_height
;
}
//assign
cv
::
Mat
test_image
=
image_roi
(
roi
);
detector_descriptor_ptr_
->
detect
(
test_image
,
keypoints
);
detector_descriptor_ptr_
->
compute
(
test_image
,
keypoints
,
descriptors
);
cv
::
Mat
target_descriptor
;
//B(cv::Rect(0,0,vec_length,1));
target_descriptor
=
target_descriptors
(
cv
::
Rect
(
0
,
j
,
target_descriptors
.
cols
,
1
));
matcher_ptr_
->
match
(
target_descriptor
,
descriptors
,
cv_matches
);
Scalar
normalized_score
=
1
-
(
Scalar
)(
cv_matches
[
0
].
distance
)
/
size_bits
;
std
::
cout
<<
"normalized score: "
<<
normalized_score
<<
std
::
endl
;
if
(
normalized_score
<
0.8
)
if
(
keypoints
.
size
()
!=
0
)
{
std
::
cout
<<
"not tracked"
<<
std
::
endl
;
matcher_ptr_
->
match
(
target_descriptor
,
descriptors
,
cv_matches
);
Scalar
normalized_score
=
1
-
(
Scalar
)(
cv_matches
[
0
].
distance
)
/
size_bits
;
std
::
cout
<<
"normalized score: "
<<
normalized_score
<<
std
::
endl
;
if
(
normalized_score
<
0.8
)
{
std
::
cout
<<
"not tracked"
<<
std
::
endl
;
}
else
{
std
::
cout
<<
"tracked"
<<
std
::
endl
;
tracked_keypoints
++
;
cv
::
Point
point
,
t_point
;
point
.
x
=
keypoints
[
cv_matches
[
0
].
trainIdx
].
pt
.
x
+
roi
.
x
;
point
.
y
=
keypoints
[
cv_matches
[
0
].
trainIdx
].
pt
.
y
+
roi
.
y
;
t_point
.
x
=
target_keypoints
[
j
].
pt
.
x
;
t_point
.
y
=
target_keypoints
[
j
].
pt
.
y
;
cv
::
circle
(
image_roi
,
t_point
,
4
,
cv
::
Scalar
(
51.0
,
51.0
,
255.0
),
-
1
,
3
,
0
);
cv
::
circle
(
image_roi
,
point
,
2
,
cv
::
Scalar
(
255.0
,
255.0
,
0.0
),
-
1
,
8
,
0
);
cv
::
putText
(
image_roi
,
std
::
to_string
(
j
),
point
,
cv
::
FONT_HERSHEY_SIMPLEX
,
0.4
,
cv
::
Scalar
(
255.0
,
255.0
,
0.0
));
//introduce in list - tracked point
// cv::KeyPoint tracked_kp = keypoints[cv_matches[0].trainIdx];
// tracked_kp.pt.x = tracked_kp.pt.x + roi.x;
// tracked_kp.pt.y = tracked_kp.pt.y + roi.y;
// current_keypoints.push_back(tracked_kp);
// cv::Mat tracked_desc;
// tracked_desc = descriptors(cv::Rect(0,cv_matches[0].trainIdx,target_descriptors.cols,1));
// current_descriptors.push_back(tracked_desc);
//introduce in list - target point
current_keypoints
.
push_back
(
target_keypoints
[
j
]);
current_descriptors
.
push_back
(
target_descriptor
);
}
}
else
{
std
::
cout
<<
"tracked"
<<
std
::
endl
;
tracked_keypoints
++
;
cv
::
Point
point
,
t_point
;
point
.
x
=
keypoints
[
cv_matches
[
0
].
trainIdx
].
pt
.
x
;
point
.
y
=
keypoints
[
cv_matches
[
0
].
trainIdx
].
pt
.
y
;
t_point
.
x
=
target_keypoints
[
j
].
pt
.
x
;
t_point
.
y
=
target_keypoints
[
j
].
pt
.
y
;
cv
::
circle
(
image_roi
,
t_point
,
4
,
cv
::
Scalar
(
51.0
,
51.0
,
255.0
),
-
1
,
3
,
0
);
cv
::
circle
(
image_roi
,
point
,
2
,
cv
::
Scalar
(
255.0
,
255.0
,
0.0
),
-
1
,
8
,
0
);
cv
::
putText
(
image_roi
,
std
::
to_string
(
j
),
point
,
cv
::
FONT_HERSHEY_SIMPLEX
,
0.4
,
cv
::
Scalar
(
255.0
,
255.0
,
0.0
));
}
std
::
cout
<<
"not tracked"
<<
std
::
endl
;
}
...
...
@@ -147,13 +215,22 @@ int main(int argc, char** argv)
std
::
cout
<<
"percentage: "
<<
((
float
)((
float
)
tracked_keypoints
/
(
float
)
target_keypoints
.
size
()))
*
100
<<
"%"
<<
std
::
endl
;
if
(
tracked_keypoints
==
0
)
{
detector_descriptor_ptr_
->
detect
(
image_roi_
,
target_keypoints
);
detector_descriptor_ptr_
->
compute
(
image_roi_
,
target_keypoints
,
target_descriptors
);
std
::
cout
<<
"numbre of new keypoints to be tracked: "
<<
target_keypoints
.
size
()
<<
std
::
endl
;
}
else
{
target_keypoints
=
current_keypoints
;
target_descriptors
=
current_descriptors
;
current_keypoints
.
clear
();
}
cv
::
imshow
(
"Feature tracker"
,
image_roi
);
cv
::
waitKey
(
0
);
target_keypoints
=
keypoints
;
target_descriptors
=
descriptors
;
f
++
;
capture
>>
frame
[
f
%
buffer_size
];
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment