Skip to content
Snippets Groups Projects
Commit b2b71afd authored by Dinesh Atchuthan's avatar Dinesh Atchuthan
Browse files

fixture design

parent 25ba50f8
No related branches found
No related tags found
No related merge requests found
...@@ -18,7 +18,60 @@ ...@@ -18,7 +18,60 @@
#include <iostream> #include <iostream>
using namespace wolf; class ProcessorIMU : public testing::Test
{
public:
wolf::ProblemPtr problem;
wolf::SensorBasePtr sensor_ptr;
wolf::TimeStamp t;
wolf::Scalar mti_clock, tmp;
Eigen::Vector6s data;
Eigen::Matrix6s data_cov;
Eigen::VectorXs x0;
std::shared_ptr<wolf::CaptureIMU> cap_imu_ptr;
virtual void SetUp()
{
using namespace wolf;
using namespace Eigen;
using std::shared_ptr;
using std::make_shared;
using std::static_pointer_cast;
using namespace wolf::Constants;
// Wolf problem
problem = Problem::create(FRM_PQVBB_3D);
Vector7s extrinsics = (Vector7s()<<1,0,0, 0,0,0,1).finished();
sensor_ptr = problem->installSensor("IMU", "Main IMU", extrinsics, shared_ptr<IntrinsicsBase>());
ProcessorBasePtr processor_ptr = problem->installProcessor("IMU", "IMU pre-integrator", "Main IMU", "");
// Time and data variables
data = Vector6s::Zero();
data_cov = Matrix6s::Identity();
// Set the origin
x0.resize(16);
// Create one capture to store the IMU data arriving from (sensor / callback / file / etc.)
cap_imu_ptr = make_shared<CaptureIMU>(t, sensor_ptr, data);
}
virtual void TearDown()
{
// code here will be called just after the test completes
// ok to through exceptions from here if need be
/*
You can do deallocation of resources in TearDown or the destructor routine.
However, if you want exception handling you must do it only in the TearDown code because throwing an exception
from the destructor results in undefined behavior.
The Google assertion macros may throw exceptions in platforms where they are enabled in future releases.
Therefore, it's a good idea to use assertion macros in the TearDown code for better maintenance.
*/
}
};
/*using namespace wolf;
using namespace Eigen; using namespace Eigen;
using std::shared_ptr; using std::shared_ptr;
using std::make_shared; using std::make_shared;
...@@ -44,10 +97,10 @@ VectorXs x0(16); ...@@ -44,10 +97,10 @@ VectorXs x0(16);
// Create one capture to store the IMU data arriving from (sensor / callback / file / etc.) // Create one capture to store the IMU data arriving from (sensor / callback / file / etc.)
shared_ptr<CaptureIMU> cap_imu_ptr = make_shared<CaptureIMU>(t, sensor_ptr, data); shared_ptr<CaptureIMU> cap_imu_ptr = make_shared<CaptureIMU>(t, sensor_ptr, data);
*/
TEST_F(ProcessorIMU, acc_x)
TEST(ProcessorIMU, acc_x)
{ {
t.set(0); // clock in 0,1 ms ticks t.set(0); // clock in 0,1 ms ticks
x0 << 0,0,0, 0,0,0,1, 0,0,0, 0,0,0, 0,0,0; // Try some non-zero biases x0 << 0,0,0, 0,0,0,1, 0,0,0, 0,0,0, 0,0,0; // Try some non-zero biases
...@@ -61,13 +114,13 @@ TEST(ProcessorIMU, acc_x) ...@@ -61,13 +114,13 @@ TEST(ProcessorIMU, acc_x)
sensor_ptr->process(cap_imu_ptr); sensor_ptr->process(cap_imu_ptr);
// Expected state after one integration // Expected state after one integration
VectorXs x(16); Eigen::VectorXs x(16);
x << 0.01,0,0, 0,0,0,1, 0.2,0,0, 0,0,0, 0,0,0; // advanced at a=2m/s2 during 0.1s ==> dx = 0.5*2*0.1^2 = 0.01; dvx = 2*0.1 = 0.2 x << 0.01,0,0, 0,0,0,1, 0.2,0,0, 0,0,0, 0,0,0; // advanced at a=2m/s2 during 0.1s ==> dx = 0.5*2*0.1^2 = 0.01; dvx = 2*0.1 = 0.2
ASSERT_TRUE((problem->getCurrentState() - x).isMuchSmallerThan(1, EPS_SMALL)); ASSERT_TRUE((problem->getCurrentState() - x).isMuchSmallerThan(1, wolf::Constants::EPS_SMALL));
} }
TEST(ProcessorIMU, acc_y) TEST_F(ProcessorIMU, acc_y)
{ {
t.set(0); // clock in 0,1 ms ticks t.set(0); // clock in 0,1 ms ticks
x0 << 0,0,0, 0,0,0,1, 0,0,0, 0,0,0, 0,0,0; // Try some non-zero biases x0 << 0,0,0, 0,0,0,1, 0,0,0, 0,0,0, 0,0,0; // Try some non-zero biases
...@@ -81,13 +134,13 @@ TEST(ProcessorIMU, acc_y) ...@@ -81,13 +134,13 @@ TEST(ProcessorIMU, acc_y)
sensor_ptr->process(cap_imu_ptr); sensor_ptr->process(cap_imu_ptr);
// Expected state after one integration // Expected state after one integration
VectorXs x(16); Eigen::VectorXs x(16);
x << 0,0.00001,0, 0,0,0,1, 0,0.02,0, 0,0,0, 0,0,0; // advanced at a=20m/s2 during 0.001s ==> dx = 0.5*20*0.001^2 = 0.00001; dvx = 20*0.001 = 0.02 x << 0,0.00001,0, 0,0,0,1, 0,0.02,0, 0,0,0, 0,0,0; // advanced at a=20m/s2 during 0.001s ==> dx = 0.5*20*0.001^2 = 0.00001; dvx = 20*0.001 = 0.02
ASSERT_TRUE((problem->getCurrentState() - x).isMuchSmallerThan(1, EPS_SMALL)); ASSERT_TRUE((problem->getCurrentState() - x).isMuchSmallerThan(1, wolf::Constants::EPS_SMALL));
} }
TEST(ProcessorIMU, acc_z) TEST_F(ProcessorIMU, acc_z)
{ {
t.set(0); // clock in 0,1 ms ticks t.set(0); // clock in 0,1 ms ticks
x0 << 0,0,0, 0,0,0,1, 0,0,0, 0,0,0, 0,0,0; // Try some non-zero biases x0 << 0,0,0, 0,0,0,1, 0,0,0, 0,0,0, 0,0,0; // Try some non-zero biases
...@@ -101,13 +154,13 @@ TEST(ProcessorIMU, acc_z) ...@@ -101,13 +154,13 @@ TEST(ProcessorIMU, acc_z)
sensor_ptr->process(cap_imu_ptr); sensor_ptr->process(cap_imu_ptr);
// Expected state after one integration // Expected state after one integration
VectorXs x(16); Eigen::VectorXs x(16);
x << 0,0,0.01, 0,0,0,1, 0,0,0.2, 0,0,0, 0,0,0; // advanced at a=2m/s2 during 0.1s ==> dz = 0.5*2*0.1^2 = 0.01; dvz = 2*0.1 = 0.2 x << 0,0,0.01, 0,0,0,1, 0,0,0.2, 0,0,0, 0,0,0; // advanced at a=2m/s2 during 0.1s ==> dz = 0.5*2*0.1^2 = 0.01; dvz = 2*0.1 = 0.2
ASSERT_TRUE((problem->getCurrentState() - x).isMuchSmallerThan(1, EPS_SMALL)); ASSERT_TRUE((problem->getCurrentState() - x).isMuchSmallerThan(1, wolf::Constants::EPS_SMALL));
} }
TEST(ProcessorIMU, Covariances) TEST_F(ProcessorIMU, Covariances)
{ {
data_cov.topLeftCorner(3,3) *= 0.01; // acc variance data_cov.topLeftCorner(3,3) *= 0.01; // acc variance
data_cov.bottomRightCorner(3,3) *= 0.01; // gyro variance data_cov.bottomRightCorner(3,3) *= 0.01; // gyro variance
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment