Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
wolf
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mobile_robotics
wolf_projects
wolf_lib
wolf
Commits
6b21f1a7
Commit
6b21f1a7
authored
6 years ago
by
Joan Solà Ortega
Browse files
Options
Downloads
Patches
Plain Diff
Document tests of preint and solve
parent
6c5b9e4f
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!307
New Diff Drive suite with sensor self-calibration
Pipeline
#4104
passed
6 years ago
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
test/gtest_factor_diff_drive.cpp
+88
-14
88 additions, 14 deletions
test/gtest_factor_diff_drive.cpp
with
88 additions
and
14 deletions
test/gtest_factor_diff_drive.cpp
+
88
−
14
View file @
6b21f1a7
...
@@ -382,6 +382,41 @@ TEST_F(FactorDiffDriveTest, solve_sensor_intrinsics)
...
@@ -382,6 +382,41 @@ TEST_F(FactorDiffDriveTest, solve_sensor_intrinsics)
TEST
(
FactorDiffDrive
,
preintegrate_and_solve_sensor_intrinsics_gt
)
TEST
(
FactorDiffDrive
,
preintegrate_and_solve_sensor_intrinsics_gt
)
{
{
/*
* The trajectory is an S-shape of two 90-deg arcs of radius 1.5m.
* Passage poses are:
* x0: Initial: 0 , 0 , 0
* x1: Half : 1.5, -1.5 , -pi/2
* x2: Final : 3 , -3 , 0
*
* x0 1.5 3
* *> ------+--------+------> X
* | *
* |
* | *
* |
* -1.5 + * x1
* | v
* | *
* |
* | * x2
* -3 + *>
* |
* v
* -Y
*
* Notes:
* - We make two arcs because the intrinsics are not observable with just one arc.
* - The deltas are pre-integrated with ground truth values of the intrinsics. They are perturbed before solving.
* - From x0 to x1 we integrate 6 identical deltas. There are 2 intermediate keyframes.
* - From x1 to x2 we integrate 6 identical deltas, turning to the other side as the first 6. There are 2 intermediate keyframes.
* - The total of deltas is 12.
* - The total of keyframes is 7.
* - Keyframes x0 and x2 are fixed to provide the boundary conditions.
* - The other 5 keyframes including x1 are estimated.
* - The sensor intrinsics are also estimated.
*/
ProblemPtr
problem
=
Problem
::
create
(
"PO"
,
2
);
ProblemPtr
problem
=
Problem
::
create
(
"PO"
,
2
);
CeresManagerPtr
solver
=
std
::
make_shared
<
CeresManager
>
(
problem
);
CeresManagerPtr
solver
=
std
::
make_shared
<
CeresManager
>
(
problem
);
...
@@ -454,30 +489,33 @@ TEST(FactorDiffDrive, preintegrate_and_solve_sensor_intrinsics_gt)
...
@@ -454,30 +489,33 @@ TEST(FactorDiffDrive, preintegrate_and_solve_sensor_intrinsics_gt)
auto
F2
=
problem
->
getLastKeyFrame
();
// this matches the end of the arc precisely so it may be used for checks.
auto
F2
=
problem
->
getLastKeyFrame
();
// this matches the end of the arc precisely so it may be used for checks.
// Fix
all but S ; perturb Sensor ; solve ; print and assert values of Sensor
// Fix
boundaries and unfix S ;
F0
->
fix
();
F0
->
fix
();
F2
->
fix
();
F2
->
fix
();
sensor
->
unfixIntrinsics
();
sensor
->
unfixIntrinsics
();
// Perturb S
Vector3s
calib_pert
=
calib_gt
+
Vector3s
::
Random
()
*
0.2
;
Vector3s
calib_pert
=
calib_gt
+
Vector3s
::
Random
()
*
0.2
;
sensor
->
getIntrinsic
()
->
setState
(
calib_pert
);
sensor
->
getIntrinsic
()
->
setState
(
calib_pert
);
WOLF_TRACE
(
"
\n
========== SOLVE ========="
);
std
::
string
report
=
solver
->
solve
(
SolverManager
::
ReportVerbosity
::
BRIEF
);
std
::
string
report
=
solver
->
solve
(
SolverManager
::
ReportVerbosity
::
BRIEF
);
WOLF_TRACE
(
"
\n
"
,
report
);
WOLF_TRACE
(
"
\n
========== SOLVED ========="
);
for
(
t
=
0
;
t
<
(
2
*
N
+
1
)
*
dt
;
t
+=
dt
)
for
(
t
=
0
;
t
<
(
2
*
N
+
1
)
*
dt
;
t
+=
dt
)
{
{
WOLF_TRACE
(
"x("
,
t
.
getSeconds
(),
") = "
,
problem
->
getState
(
t
).
transpose
());
WOLF_TRACE
(
"x("
,
t
.
getSeconds
(),
") = "
,
problem
->
getState
(
t
).
transpose
());
}
}
WOLF_TRACE
(
"
F
1 : "
,
problem
->
getState
(
N
*
dt
).
transpose
());
WOLF_TRACE
(
"
x
1 : "
,
problem
->
getState
(
N
*
dt
).
transpose
());
WOLF_TRACE
(
"
F
2 : "
,
F2
->
getState
().
transpose
());
WOLF_TRACE
(
"
x
2 : "
,
F2
->
getState
().
transpose
());
WOLF_TRACE
(
"calib_preint : "
,
calib_preint
.
transpose
());
WOLF_TRACE
(
"calib_preint : "
,
calib_preint
.
transpose
());
WOLF_TRACE
(
"calib_pert : "
,
calib_pert
.
transpose
());
WOLF_TRACE
(
"calib_pert : "
,
calib_pert
.
transpose
());
WOLF_TRACE
(
"calib_est : "
,
sensor
->
getIntrinsic
()
->
getState
().
transpose
());
WOLF_TRACE
(
"calib_est : "
,
sensor
->
getIntrinsic
()
->
getState
().
transpose
());
WOLF_TRACE
(
"calib_gt : "
,
calib_gt
.
transpose
());
WOLF_TRACE
(
"calib_gt : "
,
calib_gt
.
transpose
());
ASSERT_MATRIX_APPROX
(
sensor
->
getIntrinsic
()
->
getState
(),
calib_gt
,
1e-6
);
ASSERT_MATRIX_APPROX
(
sensor
->
getIntrinsic
()
->
getState
(),
calib_gt
,
1e-6
);
ASSERT_MATRIX_APPROX
(
problem
->
getCurrentState
(),
x2
,
1e-6
);
ASSERT_MATRIX_APPROX
(
problem
->
getState
(
N
*
dt
),
x1
,
1e-6
);
ASSERT_MATRIX_APPROX
(
problem
->
getState
(
2
*
N
*
dt
),
x2
,
1e-6
);
std
::
cout
<<
"
\n\n
"
<<
std
::
endl
;
std
::
cout
<<
"
\n\n
"
<<
std
::
endl
;
...
@@ -485,6 +523,42 @@ TEST(FactorDiffDrive, preintegrate_and_solve_sensor_intrinsics_gt)
...
@@ -485,6 +523,42 @@ TEST(FactorDiffDrive, preintegrate_and_solve_sensor_intrinsics_gt)
TEST
(
FactorDiffDrive
,
preintegrate_and_solve_sensor_intrinsics
)
TEST
(
FactorDiffDrive
,
preintegrate_and_solve_sensor_intrinsics
)
{
{
/*
* The trajectory is an S-shape of two 90-deg arcs of radius 1.5m.
* Passage poses are:
* x0: Initial: 0 , 0 , 0
* x1: Half : 1.5, -1.5 , -pi/2
* x2: Final : 3 , -3 , 0
*
* x0 1.5 3
* *> ------+--------+------> X
* | *
* |
* | *
* |
* -1.5 + * x1
* | v
* | *
* |
* | * x2
* -3 + *>
* |
* v
* -Y
*
* Notes:
* - We make two arcs because the intrinsics are not observable with just one arc.
* - The deltas are pre-integrated with wrong values of the intrinsics. The true values must be found by solving.
* - From x0 to x1 we integrate 6 identical deltas. There are 2 intermediate keyframes.
* - From x1 to x2 we integrate 6 identical deltas, turning to the other side as the first 6. There are 2 intermediate keyframes.
* - The total of deltas is 12.
* - The total of keyframes is 7.
* - Keyframes x0 and x2 are fixed to provide the boundary conditions.
* - The other 5 keyframes including x1 are estimated.
* - The sensor intrinsics are also estimated.
*/
ProblemPtr
problem
=
Problem
::
create
(
"PO"
,
2
);
ProblemPtr
problem
=
Problem
::
create
(
"PO"
,
2
);
CeresManagerPtr
solver
=
std
::
make_shared
<
CeresManager
>
(
problem
);
CeresManagerPtr
solver
=
std
::
make_shared
<
CeresManager
>
(
problem
);
...
@@ -534,7 +608,6 @@ TEST(FactorDiffDrive, preintegrate_and_solve_sensor_intrinsics)
...
@@ -534,7 +608,6 @@ TEST(FactorDiffDrive, preintegrate_and_solve_sensor_intrinsics)
for
(
int
n
=
0
;
n
<
N
;
n
++
)
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
{
t
+=
dt
;
t
+=
dt
;
WOLF_TRACE
(
"ts: "
,
t
);
C
->
setTimeStamp
(
t
);
C
->
setTimeStamp
(
t
);
C
->
process
();
C
->
process
();
}
}
...
@@ -542,11 +615,12 @@ TEST(FactorDiffDrive, preintegrate_and_solve_sensor_intrinsics)
...
@@ -542,11 +615,12 @@ TEST(FactorDiffDrive, preintegrate_and_solve_sensor_intrinsics)
// left turn 90 deg in N steps --> ends up in (3, -3, 0)
// left turn 90 deg in N steps --> ends up in (3, -3, 0)
data
(
0
)
=
0.25
*
intr
->
ticks_per_wheel_revolution
/
N
;
data
(
0
)
=
0.25
*
intr
->
ticks_per_wheel_revolution
/
N
;
data
(
1
)
=
0.50
*
intr
->
ticks_per_wheel_revolution
/
N
;
data
(
1
)
=
0.50
*
intr
->
ticks_per_wheel_revolution
/
N
;
C
->
setData
(
data
);
C
->
setData
(
data
);
for
(
int
n
=
0
;
n
<
N
;
n
++
)
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
{
t
+=
dt
;
t
+=
dt
;
WOLF_TRACE
(
"ts: "
,
t
);
C
->
setTimeStamp
(
t
);
C
->
setTimeStamp
(
t
);
C
->
process
();
C
->
process
();
}
}
...
@@ -555,37 +629,37 @@ TEST(FactorDiffDrive, preintegrate_and_solve_sensor_intrinsics)
...
@@ -555,37 +629,37 @@ TEST(FactorDiffDrive, preintegrate_and_solve_sensor_intrinsics)
F2
->
setState
(
x2
);
// Impose known final state regardless of integrated value.
F2
->
setState
(
x2
);
// Impose known final state regardless of integrated value.
// Fix
all but
S ;
// Fix
boundaries and unfix
S ;
F0
->
fix
();
F0
->
fix
();
F2
->
fix
();
F2
->
fix
();
sensor
->
unfixIntrinsics
();
sensor
->
unfixIntrinsics
();
WOLF_TRACE
(
"
\n
========== SOLVE ========="
);
WOLF_TRACE
(
"
\n
========== SOLVE ========="
);
std
::
string
report
=
solver
->
solve
(
SolverManager
::
ReportVerbosity
::
FULL
);
std
::
string
report
=
solver
->
solve
(
SolverManager
::
ReportVerbosity
::
BRIEF
);
WOLF_TRACE
(
"
\n
"
,
report
);
WOLF_TRACE
(
"
\n
"
,
report
);
for
(
t
=
0
;
t
<
(
2
*
N
+
1
)
*
dt
;
t
+=
dt
)
for
(
t
=
0
;
t
<
(
2
*
N
+
1
)
*
dt
;
t
+=
dt
)
{
{
WOLF_TRACE
(
"x("
,
t
.
getSeconds
(),
") = "
,
problem
->
getState
(
t
).
transpose
());
WOLF_TRACE
(
"x("
,
t
.
getSeconds
(),
") = "
,
problem
->
getState
(
t
).
transpose
());
}
}
WOLF_TRACE
(
"
F
1 : "
,
problem
->
getState
(
N
*
dt
).
transpose
());
WOLF_TRACE
(
"
x
1 : "
,
problem
->
getState
(
N
*
dt
).
transpose
());
WOLF_TRACE
(
"
F
2 : "
,
F2
->
getState
().
transpose
());
WOLF_TRACE
(
"
x
2 : "
,
F2
->
getState
().
transpose
());
WOLF_TRACE
(
"calib_preint : "
,
calib_preint
.
transpose
());
WOLF_TRACE
(
"calib_preint : "
,
calib_preint
.
transpose
());
WOLF_TRACE
(
"calib_est : "
,
sensor
->
getIntrinsic
()
->
getState
().
transpose
());
WOLF_TRACE
(
"calib_est : "
,
sensor
->
getIntrinsic
()
->
getState
().
transpose
());
WOLF_TRACE
(
"calib_GT : "
,
calib_gt
.
transpose
());
WOLF_TRACE
(
"calib_GT : "
,
calib_gt
.
transpose
());
ASSERT_MATRIX_APPROX
(
sensor
->
getIntrinsic
()
->
getState
(),
calib_gt
,
1e-2
);
ASSERT_MATRIX_APPROX
(
sensor
->
getIntrinsic
()
->
getState
(),
calib_gt
,
1e-2
);
ASSERT_MATRIX_APPROX
(
problem
->
getCurrentState
(),
x2
,
1e-6
);
ASSERT_MATRIX_APPROX
(
problem
->
getState
(
N
*
dt
),
x1
,
1e-2
);
ASSERT_MATRIX_APPROX
(
problem
->
getState
(
2
*
N
*
dt
),
x2
,
1e-6
);
}
}
int
main
(
int
argc
,
char
**
argv
)
int
main
(
int
argc
,
char
**
argv
)
{
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
testing
::
InitGoogleTest
(
&
argc
,
argv
);
::
testing
::
GTEST_FLAG
(
filter
)
=
"FactorDiffDrive.*"
;
//
::testing::GTEST_FLAG(filter) = "FactorDiffDrive.*";
//::testing::GTEST_FLAG(filter) = "FactorDiffDrive.preintegrate_and_solve_sensor_intrinsics";
//::testing::GTEST_FLAG(filter) = "FactorDiffDrive.preintegrate_and_solve_sensor_intrinsics";
return
RUN_ALL_TESTS
();
return
RUN_ALL_TESTS
();
}
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment