Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
wolf
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mobile_robotics
wolf_projects
wolf_lib
wolf
Commits
64f3b4fe
Commit
64f3b4fe
authored
6 years ago
by
Joan Solà Ortega
Browse files
Options
Downloads
Patches
Plain Diff
Rotations
parent
02ff391e
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
src/rotations.h
+210
-106
210 additions, 106 deletions
src/rotations.h
src/test/CMakeLists.txt
+1
-1
1 addition, 1 deletion
src/test/CMakeLists.txt
src/test/gtest_rotation.cpp
+92
-24
92 additions, 24 deletions
src/test/gtest_rotation.cpp
with
303 additions
and
131 deletions
src/rotations.h
+
210
−
106
View file @
64f3b4fe
...
...
@@ -21,7 +21,8 @@ namespace wolf
* @return formatted angle
*/
template
<
typename
T
>
inline
T
pi2pi
(
const
T
angle
)
inline
T
pi2pi
(
const
T
angle
)
{
using
std
::
fmod
;
...
...
@@ -36,7 +37,8 @@ inline T pi2pi(const T angle)
* @return angle in radians
*/
template
<
typename
T
>
inline
T
toRad
(
const
T
deg
)
inline
T
toRad
(
const
T
deg
)
{
return
(
T
)
M_TORAD
*
deg
;
}
...
...
@@ -47,7 +49,8 @@ inline T toRad(const T deg)
* @return angle in degrees
*/
template
<
typename
T
>
inline
T
toDeg
(
const
T
rad
)
inline
T
toDeg
(
const
T
rad
)
{
return
(
T
)
M_TODEG
*
rad
;
}
...
...
@@ -61,7 +64,8 @@ inline T toDeg(const T rad)
* @return the skew-symmetric matrix V so that V*u = _v.cross(u), for u in R^3
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
skew
(
const
Eigen
::
MatrixBase
<
Derived
>&
_v
)
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
skew
(
const
Eigen
::
MatrixBase
<
Derived
>&
_v
)
{
MatrixSizeCheck
<
3
,
1
>::
check
(
_v
);
...
...
@@ -82,7 +86,8 @@ inline Eigen::Matrix<typename Derived::Scalar, 3, 3> skew(const Eigen::MatrixBas
* @return a 3-vector v such that skew(v) = _m
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
1
>
vee
(
const
Eigen
::
MatrixBase
<
Derived
>&
_m
)
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
1
>
vee
(
const
Eigen
::
MatrixBase
<
Derived
>&
_m
)
{
MatrixSizeCheck
<
3
,
3
>::
check
(
_m
);
...
...
@@ -91,6 +96,156 @@ inline Eigen::Matrix<typename Derived::Scalar, 3, 1> vee(const Eigen::MatrixBase
return
(
Eigen
::
Matrix
<
T
,
3
,
1
>
()
<<
_m
(
2
,
1
),
_m
(
0
,
2
),
_m
(
1
,
0
)).
finished
();
}
////////////////////////////////////////////////////
// Rotation conversions q, R, Euler, back and forth
//
// Euler angles are denoted 'e' and are in the ZYX convention
/** \brief quaternion to rotation matrix conversion
*
* @param _q a right-handed unit quaternion
* @return the equivalent rotation matrix
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
q2R
(
const
Eigen
::
QuaternionBase
<
Derived
>&
_q
)
{
return
_q
.
matrix
();
}
/** \brief quaternion to rotation matrix conversion
*
* @param _q a right-handed unit quaternion
* @return the equivalent rotation matrix
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
q2R
(
const
Eigen
::
MatrixBase
<
Derived
>&
_q
)
{
MatrixSizeCheck
<
4
,
1
>::
check
(
_q
);
Eigen
::
Quaternion
<
typename
Derived
::
Scalar
>
q
(
_q
(
3
),
_q
(
0
),
_q
(
1
),
_q
(
2
));
return
q2R
(
q
);
}
/** \brief rotation matrix to quaternion conversion
*
* @param _R a rotation matrix
* @return the equivalent right-handed unit quaternion
*/
template
<
typename
Derived
>
inline
Eigen
::
Quaternion
<
typename
Derived
::
Scalar
>
R2q
(
const
Eigen
::
MatrixBase
<
Derived
>&
_R
)
{
MatrixSizeCheck
<
3
,
3
>::
check
(
_R
);
return
Eigen
::
Quaternion
<
typename
Derived
::
Scalar
>
(
_R
);
}
/** \brief Euler angles to quaternion
* \param _euler = (roll pitch yaw) in ZYX convention
* \return equivalent quaternion
*/
template
<
typename
D
>
inline
Eigen
::
Quaternion
<
typename
D
::
Scalar
>
e2q
(
const
Eigen
::
MatrixBase
<
D
>&
_euler
)
{
MatrixSizeCheck
<
3
,
1
>::
check
(
_euler
);
typedef
typename
D
::
Scalar
T
;
const
Eigen
::
AngleAxis
<
T
>
ax
=
Eigen
::
AngleAxis
<
T
>
(
_euler
(
0
),
Eigen
::
Matrix
<
T
,
3
,
1
>::
UnitX
());
const
Eigen
::
AngleAxis
<
T
>
ay
=
Eigen
::
AngleAxis
<
T
>
(
_euler
(
1
),
Eigen
::
Matrix
<
T
,
3
,
1
>::
UnitY
());
const
Eigen
::
AngleAxis
<
T
>
az
=
Eigen
::
AngleAxis
<
T
>
(
_euler
(
2
),
Eigen
::
Matrix
<
T
,
3
,
1
>::
UnitZ
());
return
Eigen
::
Quaternion
<
T
>
(
az
*
ay
*
ax
);
}
/** \brief Euler angles to rotation matrix
* \param _e = (roll pitch yaw) in ZYX convention
* \return equivalent rotation matrix
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
e2R
(
const
Eigen
::
MatrixBase
<
Derived
>&
_e
)
{
MatrixSizeCheck
<
3
,
1
>::
check
(
_e
);
return
e2q
(
_e
).
matrix
();
}
template
<
typename
Derived
>
inline
typename
Eigen
::
MatrixBase
<
Derived
>::
Scalar
getYaw
(
const
Eigen
::
MatrixBase
<
Derived
>&
R
)
{
MatrixSizeCheck
<
3
,
3
>::
check
(
R
);
using
std
::
atan2
;
return
atan2
(
R
(
1
,
0
),
R
(
0
,
0
)
);
}
template
<
typename
Derived
>
inline
typename
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
1
>
R2e
(
const
Eigen
::
MatrixBase
<
Derived
>&
_R
)
{
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
1
>
e
;
e
(
0
)
=
atan2
(
_R
(
2
,
1
),
_R
(
2
,
2
));
e
(
1
)
=
atan2
(
-
_R
(
2
,
0
),
sqrt
(
_R
(
0
,
0
)
*
_R
(
0
,
0
)
+
_R
(
1
,
0
)
*
_R
(
1
,
0
)));
e
(
2
)
=
atan2
(
_R
(
1
,
0
),
_R
(
0
,
0
));
return
e
;
}
template
<
typename
Derived
>
inline
typename
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
1
>
q2e
(
const
Eigen
::
MatrixBase
<
Derived
>&
_q
)
{
typedef
typename
Derived
::
Scalar
T
;
Eigen
::
Matrix
<
T
,
3
,
1
>
e
;
Scalar
w
=
_q
(
3
);
Scalar
x
=
_q
(
0
);
Scalar
y
=
_q
(
1
);
Scalar
z
=
_q
(
2
);
Scalar
xx
=
x
*
x
;
Scalar
xy
=
x
*
y
;
Scalar
xz
=
x
*
z
;
Scalar
yy
=
y
*
y
;
Scalar
yz
=
y
*
z
;
Scalar
zz
=
z
*
z
;
Scalar
wx
=
w
*
x
;
Scalar
wy
=
w
*
y
;
Scalar
wz
=
w
*
z
;
Scalar
r00
=
T
(
1
)
-
T
(
2
)
*
(
yy
+
zz
);
Scalar
r10
=
T
(
2
)
*
(
xy
+
wz
);
Scalar
r20
=
T
(
2
)
*
(
xz
-
wy
);
Scalar
r21
=
T
(
2
)
*
(
yz
+
wx
);
Scalar
r22
=
T
(
1
)
-
T
(
2
)
*
(
xx
+
yy
);
e
(
0
)
=
atan2
(
r21
,
r22
);
e
(
1
)
=
atan2
(
-
r20
,
sqrt
(
r00
*
r00
+
r10
*
r10
));
e
(
2
)
=
atan2
(
r10
,
r00
);
return
e
;
}
template
<
typename
Derived
>
inline
typename
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
1
>
q2e
(
const
Eigen
::
QuaternionBase
<
Derived
>&
_q
)
{
return
q2e
(
_q
.
coeffs
());
}
///////////////////////////////////////////////////////////////
// Rotation conversions - exp and log maps
...
...
@@ -100,7 +255,8 @@ inline Eigen::Matrix<typename Derived::Scalar, 3, 1> vee(const Eigen::MatrixBase
* @return the right-handed unit quaternion performing the rotation encoded by _v
*/
template
<
typename
Derived
>
inline
Eigen
::
Quaternion
<
typename
Derived
::
Scalar
>
exp_q
(
const
Eigen
::
MatrixBase
<
Derived
>&
_v
)
inline
Eigen
::
Quaternion
<
typename
Derived
::
Scalar
>
exp_q
(
const
Eigen
::
MatrixBase
<
Derived
>&
_v
)
{
using
std
::
sqrt
;
using
std
::
cos
;
...
...
@@ -129,7 +285,8 @@ inline Eigen::Quaternion<typename Derived::Scalar> exp_q(const Eigen::MatrixBase
* @return a rotation vector v such that _q = exp_q(v)
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
1
>
log_q
(
const
Eigen
::
QuaternionBase
<
Derived
>&
_q
)
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
1
>
log_q
(
const
Eigen
::
QuaternionBase
<
Derived
>&
_q
)
{
// Will try this implementation once Eigen accepts it!
...
...
@@ -176,7 +333,8 @@ inline Eigen::Matrix<typename Derived::Scalar, 3, 1> log_q(const Eigen::Quaterni
* @return the rotation matrix performing the rotation encoded by _v
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
exp_R
(
const
Eigen
::
MatrixBase
<
Derived
>&
_v
)
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
exp_R
(
const
Eigen
::
MatrixBase
<
Derived
>&
_v
)
{
using
std
::
sqrt
;
...
...
@@ -193,26 +351,14 @@ inline Eigen::Matrix<typename Derived::Scalar, 3, 3> exp_R(const Eigen::MatrixBa
return
Eigen
::
Matrix
<
T
,
3
,
3
>::
Identity
()
+
skew
(
_v
);
}
/** \brief rotation matrix to quaternion conversion
*
* @param _R a rotation matrix
* @return the equivalent right-handed unit quaternion
*/
template
<
typename
Derived
>
inline
Eigen
::
Quaternion
<
typename
Derived
::
Scalar
>
R2q
(
const
Eigen
::
MatrixBase
<
Derived
>&
_R
)
{
MatrixSizeCheck
<
3
,
3
>::
check
(
_R
);
return
Eigen
::
Quaternion
<
typename
Derived
::
Scalar
>
(
_R
);
}
/** \brief Rotation matrix logarithmic map
*
* @param _R a 3D rotation matrix
* @return the rotation vector v such that _R = exp_R(v)
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
1
>
log_R
(
const
Eigen
::
MatrixBase
<
Derived
>&
_R
)
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
1
>
log_R
(
const
Eigen
::
MatrixBase
<
Derived
>&
_R
)
{
return
log_q
(
R2q
(
_R
));
}
...
...
@@ -223,7 +369,8 @@ inline Eigen::Matrix<typename Derived::Scalar, 3, 1> log_R(const Eigen::MatrixBa
* @return the equivalent right-handed unit quaternion
*/
template
<
typename
Derived
>
inline
Eigen
::
Quaternion
<
typename
Derived
::
Scalar
>
v2q
(
const
Eigen
::
MatrixBase
<
Derived
>&
_v
)
inline
Eigen
::
Quaternion
<
typename
Derived
::
Scalar
>
v2q
(
const
Eigen
::
MatrixBase
<
Derived
>&
_v
)
{
return
exp_q
(
_v
);
}
...
...
@@ -234,7 +381,8 @@ inline Eigen::Quaternion<typename Derived::Scalar> v2q(const Eigen::MatrixBase<D
* @return the equivalent rotation vector
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
1
>
q2v
(
const
Eigen
::
QuaternionBase
<
Derived
>&
_q
)
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
1
>
q2v
(
const
Eigen
::
QuaternionBase
<
Derived
>&
_q
)
{
return
log_q
(
_q
);
}
...
...
@@ -245,7 +393,8 @@ inline Eigen::Matrix<typename Derived::Scalar, 3, 1> q2v(const Eigen::Quaternion
* @return the equivalent rotation matrix
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
v2R
(
const
Eigen
::
MatrixBase
<
Derived
>&
_v
)
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
v2R
(
const
Eigen
::
MatrixBase
<
Derived
>&
_v
)
{
return
exp_R
(
_v
);
}
...
...
@@ -256,34 +405,13 @@ inline Eigen::Matrix<typename Derived::Scalar, 3, 3> v2R(const Eigen::MatrixBase
* @return the equivalent rotation vector
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
1
>
R2v
(
const
Eigen
::
MatrixBase
<
Derived
>&
_R
)
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
1
>
R2v
(
const
Eigen
::
MatrixBase
<
Derived
>&
_R
)
{
return
log_R
(
_R
);
}
/** \brief quaternion to rotation matrix conversion
*
* @param _q a right-handed unit quaternion
* @return the equivalent rotation matrix
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
q2R
(
const
Eigen
::
QuaternionBase
<
Derived
>&
_q
)
{
return
_q
.
matrix
();
}
/** \brief quaternion to rotation matrix conversion
*
* @param _q a right-handed unit quaternion
* @return the equivalent rotation matrix
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
q2R
(
const
Eigen
::
MatrixBase
<
Derived
>&
_q
)
{
MatrixSizeCheck
<
4
,
1
>::
check
(
_q
);
Eigen
::
Quaternion
<
typename
Derived
::
Scalar
>
q
(
_q
(
3
),
_q
(
0
),
_q
(
1
),
_q
(
2
));
return
q2R
(
q
);
}
/////////////////////////////////////////////////////////////////
// Jacobians of SO(3)
...
...
@@ -303,7 +431,8 @@ inline Eigen::Matrix<typename Derived::Scalar, 3, 3> q2R(const Eigen::MatrixBase
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
jac_SO3_right
(
const
Eigen
::
MatrixBase
<
Derived
>&
_theta
)
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
jac_SO3_right
(
const
Eigen
::
MatrixBase
<
Derived
>&
_theta
)
{
using
std
::
sqrt
;
using
std
::
cos
;
...
...
@@ -342,7 +471,8 @@ inline Eigen::Matrix<typename Derived::Scalar, 3, 3> jac_SO3_right(const Eigen::
* log( R * exp(d_theta) ) = log(R) + Jrinv(theta) * d_theta
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
jac_SO3_right_inv
(
const
Eigen
::
MatrixBase
<
Derived
>&
_theta
)
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
jac_SO3_right_inv
(
const
Eigen
::
MatrixBase
<
Derived
>&
_theta
)
{
using
std
::
sqrt
;
using
std
::
cos
;
...
...
@@ -376,7 +506,8 @@ inline Eigen::Matrix<typename Derived::Scalar, 3, 3> jac_SO3_right_inv(const Eig
* exp(theta+d_theta) = exp(Jl(theta)*d_theta)*exp(theta)
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
jac_SO3_left
(
const
Eigen
::
MatrixBase
<
Derived
>&
_theta
)
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
jac_SO3_left
(
const
Eigen
::
MatrixBase
<
Derived
>&
_theta
)
{
using
std
::
sqrt
;
using
std
::
cos
;
...
...
@@ -414,7 +545,8 @@ inline Eigen::Matrix<typename Derived::Scalar, 3, 3> jac_SO3_left(const Eigen::M
* log( exp(d_theta) * R ) = log(R) + Jlinv(theta) * d_theta
*/
template
<
typename
Derived
>
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
jac_SO3_left_inv
(
const
Eigen
::
MatrixBase
<
Derived
>&
_theta
)
inline
Eigen
::
Matrix
<
typename
Derived
::
Scalar
,
3
,
3
>
jac_SO3_left_inv
(
const
Eigen
::
MatrixBase
<
Derived
>&
_theta
)
{
using
std
::
sqrt
;
using
std
::
cos
;
...
...
@@ -435,11 +567,12 @@ inline Eigen::Matrix<typename Derived::Scalar, 3, 3> jac_SO3_left_inv(const Eige
}
template
<
typename
D1
,
typename
D2
,
typename
D3
,
typename
D4
,
typename
D5
>
inline
void
compose
(
const
Eigen
::
QuaternionBase
<
D1
>&
_q1
,
const
Eigen
::
QuaternionBase
<
D2
>&
_q2
,
Eigen
::
QuaternionBase
<
D3
>&
_q_comp
,
Eigen
::
MatrixBase
<
D4
>&
_J_comp_q1
,
Eigen
::
MatrixBase
<
D5
>&
_J_comp_q2
)
inline
void
compose
(
const
Eigen
::
QuaternionBase
<
D1
>&
_q1
,
const
Eigen
::
QuaternionBase
<
D2
>&
_q2
,
Eigen
::
QuaternionBase
<
D3
>&
_q_comp
,
Eigen
::
MatrixBase
<
D4
>&
_J_comp_q1
,
Eigen
::
MatrixBase
<
D5
>&
_J_comp_q2
)
{
MatrixSizeCheck
<
3
,
3
>::
check
(
_J_comp_q1
);
MatrixSizeCheck
<
3
,
3
>::
check
(
_J_comp_q2
);
...
...
@@ -451,11 +584,12 @@ inline void compose(const Eigen::QuaternionBase<D1>& _q1,
}
template
<
typename
D1
,
typename
D2
,
typename
D3
,
typename
D4
,
typename
D5
>
inline
void
between
(
const
Eigen
::
QuaternionBase
<
D1
>&
_q1
,
const
Eigen
::
QuaternionBase
<
D2
>&
_q2
,
Eigen
::
QuaternionBase
<
D3
>&
_q_between
,
Eigen
::
MatrixBase
<
D4
>&
_J_between_q1
,
Eigen
::
MatrixBase
<
D5
>&
_J_between_q2
)
inline
void
between
(
const
Eigen
::
QuaternionBase
<
D1
>&
_q1
,
const
Eigen
::
QuaternionBase
<
D2
>&
_q2
,
Eigen
::
QuaternionBase
<
D3
>&
_q_between
,
Eigen
::
MatrixBase
<
D4
>&
_J_between_q1
,
Eigen
::
MatrixBase
<
D5
>&
_J_between_q2
)
{
MatrixSizeCheck
<
3
,
3
>::
check
(
_J_between_q1
);
MatrixSizeCheck
<
3
,
3
>::
check
(
_J_between_q2
);
...
...
@@ -467,86 +601,56 @@ inline void between(const Eigen::QuaternionBase<D1>& _q1,
}
template
<
typename
D1
,
typename
D2
>
inline
Eigen
::
Quaternion
<
typename
D1
::
Scalar
>
plus_right
(
const
Eigen
::
QuaternionBase
<
D1
>&
q
,
const
Eigen
::
MatrixBase
<
D2
>&
v
)
inline
Eigen
::
Quaternion
<
typename
D1
::
Scalar
>
plus_right
(
const
Eigen
::
QuaternionBase
<
D1
>&
q
,
const
Eigen
::
MatrixBase
<
D2
>&
v
)
{
MatrixSizeCheck
<
3
,
1
>::
check
(
v
);
return
q
*
exp_q
(
v
);
}
template
<
typename
D1
,
typename
D2
>
inline
Eigen
::
Matrix
<
typename
D2
::
Scalar
,
3
,
1
>
minus_right
(
const
Eigen
::
QuaternionBase
<
D1
>&
q1
,
const
Eigen
::
QuaternionBase
<
D2
>&
q2
)
inline
Eigen
::
Matrix
<
typename
D2
::
Scalar
,
3
,
1
>
minus_right
(
const
Eigen
::
QuaternionBase
<
D1
>&
q1
,
const
Eigen
::
QuaternionBase
<
D2
>&
q2
)
{
return
log_q
(
q1
.
conjugate
()
*
q2
);
}
template
<
typename
D1
,
typename
D2
>
inline
Eigen
::
Quaternion
<
typename
D1
::
Scalar
>
plus_left
(
const
Eigen
::
MatrixBase
<
D2
>&
v
,
const
Eigen
::
QuaternionBase
<
D1
>&
q
)
inline
Eigen
::
Quaternion
<
typename
D1
::
Scalar
>
plus_left
(
const
Eigen
::
MatrixBase
<
D2
>&
v
,
const
Eigen
::
QuaternionBase
<
D1
>&
q
)
{
MatrixSizeCheck
<
3
,
1
>::
check
(
v
);
return
exp_q
(
v
)
*
q
;
}
template
<
typename
D1
,
typename
D2
>
inline
Eigen
::
Matrix
<
typename
D2
::
Scalar
,
3
,
1
>
minus_left
(
const
Eigen
::
QuaternionBase
<
D1
>&
q1
,
const
Eigen
::
QuaternionBase
<
D2
>&
q2
)
inline
Eigen
::
Matrix
<
typename
D2
::
Scalar
,
3
,
1
>
minus_left
(
const
Eigen
::
QuaternionBase
<
D1
>&
q1
,
const
Eigen
::
QuaternionBase
<
D2
>&
q2
)
{
return
log_q
(
q2
*
q1
.
conjugate
());
}
template
<
typename
D1
,
typename
D2
>
inline
Eigen
::
Quaternion
<
typename
D1
::
Scalar
>
plus
(
const
Eigen
::
QuaternionBase
<
D1
>&
q
,
const
Eigen
::
MatrixBase
<
D2
>&
v
)
inline
Eigen
::
Quaternion
<
typename
D1
::
Scalar
>
plus
(
const
Eigen
::
QuaternionBase
<
D1
>&
q
,
const
Eigen
::
MatrixBase
<
D2
>&
v
)
{
return
plus_right
(
q
,
v
);
}
template
<
typename
D1
,
typename
D2
>
inline
Eigen
::
Matrix
<
typename
D2
::
Scalar
,
3
,
1
>
minus
(
const
Eigen
::
QuaternionBase
<
D1
>&
q1
,
const
Eigen
::
QuaternionBase
<
D2
>&
q2
)
inline
Eigen
::
Matrix
<
typename
D2
::
Scalar
,
3
,
1
>
minus
(
const
Eigen
::
QuaternionBase
<
D1
>&
q1
,
const
Eigen
::
QuaternionBase
<
D2
>&
q2
)
{
return
minus_right
(
q1
,
q2
);
}
template
<
typename
D1
,
typename
D2
>
inline
Eigen
::
Matrix
<
typename
D2
::
Scalar
,
3
,
1
>
diff
(
const
Eigen
::
QuaternionBase
<
D1
>&
q1
,
const
Eigen
::
QuaternionBase
<
D2
>&
q2
)
inline
Eigen
::
Matrix
<
typename
D2
::
Scalar
,
3
,
1
>
diff
(
const
Eigen
::
QuaternionBase
<
D1
>&
q1
,
const
Eigen
::
QuaternionBase
<
D2
>&
q2
)
{
return
minus
(
q1
,
q2
);
}
template
<
typename
D
>
inline
Eigen
::
Quaternion
<
typename
D
::
Scalar
>
e2q
(
const
Eigen
::
MatrixBase
<
D
>&
_euler
)
{
MatrixSizeCheck
<
3
,
1
>::
check
(
_euler
);
typedef
typename
D
::
Scalar
T
;
const
Eigen
::
AngleAxis
<
T
>
ax
=
Eigen
::
AngleAxis
<
T
>
(
_euler
(
0
),
Eigen
::
Matrix
<
T
,
3
,
1
>::
UnitX
());
const
Eigen
::
AngleAxis
<
T
>
ay
=
Eigen
::
AngleAxis
<
T
>
(
_euler
(
1
),
Eigen
::
Matrix
<
T
,
3
,
1
>::
UnitY
());
const
Eigen
::
AngleAxis
<
T
>
az
=
Eigen
::
AngleAxis
<
T
>
(
_euler
(
2
),
Eigen
::
Matrix
<
T
,
3
,
1
>::
UnitZ
());
return
Eigen
::
Quaternion
<
T
>
(
az
*
ay
*
ax
);
}
template
<
typename
T
>
inline
Eigen
::
Matrix
<
T
,
3
,
3
>
matrixRollPitchYaw
(
const
T
roll
,
const
T
pitch
,
const
T
yaw
)
{
const
Eigen
::
AngleAxis
<
T
>
ax
=
Eigen
::
AngleAxis
<
T
>
(
roll
,
Eigen
::
Matrix
<
T
,
3
,
1
>::
UnitX
());
const
Eigen
::
AngleAxis
<
T
>
ay
=
Eigen
::
AngleAxis
<
T
>
(
pitch
,
Eigen
::
Matrix
<
T
,
3
,
1
>::
UnitY
());
const
Eigen
::
AngleAxis
<
T
>
az
=
Eigen
::
AngleAxis
<
T
>
(
yaw
,
Eigen
::
Matrix
<
T
,
3
,
1
>::
UnitZ
());
return
(
az
*
ay
*
ax
).
toRotationMatrix
().
matrix
();
}
template
<
typename
Derived
>
inline
typename
Eigen
::
MatrixBase
<
Derived
>::
Scalar
getYaw
(
const
Eigen
::
MatrixBase
<
Derived
>&
R
)
{
MatrixSizeCheck
<
3
,
3
>::
check
(
R
);
using
std
::
atan2
;
return
atan2
(
R
(
1
,
0
),
R
(
0
,
0
)
);
}
}
// namespace wolf
...
...
This diff is collapsed.
Click to expand it.
src/test/CMakeLists.txt
+
1
−
1
View file @
64f3b4fe
...
...
@@ -94,7 +94,7 @@ target_link_libraries(gtest_processor_motion ${PROJECT_NAME})
# Rotation test
wolf_add_gtest
(
gtest_rotation gtest_rotation.cpp
)
target_link_libraries
(
gtest_rotation
${
PROJECT_NAME
}
)
#
target_link_libraries(gtest_rotation ${PROJECT_NAME})
# SensorBase test
wolf_add_gtest
(
gtest_sensor_base gtest_sensor_base.cpp
)
...
...
This diff is collapsed.
Click to expand it.
src/test/gtest_rotation.cpp
+
92
−
24
View file @
64f3b4fe
...
...
@@ -441,25 +441,6 @@ TEST(compose, Quat_compos_var_rateOfTurn_diff)
"
\n
computed final orientation : "
<<
wolf
::
q2v
(
q0
).
transpose
()
<<
std
::
endl
;
}
TEST
(
q2R
,
q2R_R2q
)
{
Vector3s
v
;
v
.
setRandom
();
Quaternions
q
=
v2q
(
v
);
Matrix3s
R
=
v2R
(
v
);
Quaternions
q_R
=
R2q
(
R
);
Quaternions
qq_R
(
R
);
ASSERT_NEAR
(
q
.
norm
(),
1
,
wolf
::
Constants
::
EPS
);
ASSERT_NEAR
(
q_R
.
norm
(),
1
,
wolf
::
Constants
::
EPS
);
ASSERT_NEAR
(
qq_R
.
norm
(),
1
,
wolf
::
Constants
::
EPS
);
ASSERT_MATRIX_APPROX
(
q
.
coeffs
(),
R2q
(
R
).
coeffs
(),
wolf
::
Constants
::
EPS
);
ASSERT_MATRIX_APPROX
(
q
.
coeffs
(),
qq_R
.
coeffs
(),
wolf
::
Constants
::
EPS
);
ASSERT_MATRIX_APPROX
(
R
,
q2R
(
q
),
wolf
::
Constants
::
EPS
);
ASSERT_MATRIX_APPROX
(
R
,
qq_R
.
matrix
(),
wolf
::
Constants
::
EPS
);
}
TEST
(
Plus
,
Random
)
{
Quaternions
q
;
...
...
@@ -495,20 +476,29 @@ TEST(Plus, Identity_plus_small)
TEST
(
Minus_and_diff
,
Random
)
{
Quaternions
q1
,
q2
;
Quaternions
q1
,
q2
,
qo
;
q1
.
coeffs
().
setRandom
().
normalize
();
q2
.
coeffs
().
setRandom
().
normalize
();
Vector3s
vr
=
log_q
(
q1
.
conjugate
()
*
q2
);
Vector3s
vl
=
log_q
(
q2
*
q1
.
conjugate
());
ASSERT_MATRIX_APPROX
(
minus
(
q1
,
q2
),
vr
,
1e-12
);
ASSERT_QUATERNION_APPROX
(
plus
(
q1
,
minus
(
q1
,
q2
)),
q2
,
1e-12
);
ASSERT_MATRIX_APPROX
(
diff
(
q1
,
q2
),
vr
,
1e-12
);
ASSERT_QUATERNION_APPROX
(
plus
(
q1
,
diff
(
q1
,
q2
)),
q2
,
1e-12
);
ASSERT_MATRIX_APPROX
(
minus_left
(
q1
,
q2
),
vl
,
1e-12
);
ASSERT_QUATERNION_APPROX
(
plus_left
(
minus_left
(
q1
,
q2
),
q1
),
q2
,
1e-12
);
qo
=
plus
(
q1
,
minus
(
q1
,
q2
));
if
(
q2
.
w
()
*
qo
.
w
()
<
0
)
q2
.
coeffs
()
=
-
(
q2
.
coeffs
());
// allow q = -q
ASSERT_QUATERNION_APPROX
(
qo
,
q2
,
1e-12
);
qo
=
plus
(
q1
,
diff
(
q1
,
q2
));
if
(
q2
.
w
()
*
qo
.
w
()
<
0
)
q2
.
coeffs
()
=
-
(
q2
.
coeffs
());
// allow q = -q
ASSERT_QUATERNION_APPROX
(
qo
,
q2
,
1e-12
);
qo
=
plus_left
(
minus_left
(
q1
,
q2
),
q1
);
if
(
q2
.
w
()
*
qo
.
w
()
<
0
)
q2
.
coeffs
()
=
-
(
q2
.
coeffs
());
// allow q = -q
ASSERT_QUATERNION_APPROX
(
qo
,
q2
,
1e-12
);
}
TEST
(
Jacobians
,
Jr
)
...
...
@@ -683,6 +673,84 @@ TEST(log_q, small)
}
}
TEST
(
Conversions
,
q2R_R2q
)
{
Vector3s
v
;
v
.
setRandom
();
Quaternions
q
=
v2q
(
v
);
Matrix3s
R
=
v2R
(
v
);
Quaternions
q_R
=
R2q
(
R
);
Quaternions
qq_R
(
R
);
ASSERT_NEAR
(
q
.
norm
(),
1
,
wolf
::
Constants
::
EPS
);
ASSERT_NEAR
(
q_R
.
norm
(),
1
,
wolf
::
Constants
::
EPS
);
ASSERT_NEAR
(
qq_R
.
norm
(),
1
,
wolf
::
Constants
::
EPS
);
ASSERT_MATRIX_APPROX
(
q
.
coeffs
(),
R2q
(
R
).
coeffs
(),
wolf
::
Constants
::
EPS
);
ASSERT_MATRIX_APPROX
(
q
.
coeffs
(),
qq_R
.
coeffs
(),
wolf
::
Constants
::
EPS
);
ASSERT_MATRIX_APPROX
(
R
,
q2R
(
q
),
wolf
::
Constants
::
EPS
);
ASSERT_MATRIX_APPROX
(
R
,
qq_R
.
matrix
(),
wolf
::
Constants
::
EPS
);
}
TEST
(
Conversions
,
e2q_q2e
)
{
Vector3s
e
,
eo
;
Quaternions
q
;
e
<<
0.1
,
.2
,
.3
;
q
=
e2q
(
e
);
eo
=
q2e
(
q
);
ASSERT_MATRIX_APPROX
(
eo
,
e
,
1e-10
);
eo
=
q2e
(
q
.
coeffs
());
ASSERT_MATRIX_APPROX
(
eo
,
e
,
1e-10
);
}
TEST
(
Conversions
,
e2q_q2R_R2e
)
{
Vector3s
e
,
eo
;
Quaternions
q
;
Matrix3s
R
;
e
<<
0.1
,
.2
,
.3
;
q
=
e2q
(
e
);
R
=
q2R
(
q
);
eo
=
R2e
(
R
);
ASSERT_MATRIX_APPROX
(
eo
,
e
,
1e-10
);
}
TEST
(
Conversions
,
e2R_R2e
)
{
Vector3s
e
,
eo
;
Matrix3s
R
;
e
<<
0.1
,
0.2
,
0.3
;
R
=
e2R
(
e
);
eo
=
R2e
(
R
);
ASSERT_MATRIX_APPROX
(
eo
,
e
,
1e-10
);
}
TEST
(
Conversions
,
e2R_R2q_q2e
)
{
Vector3s
e
,
eo
;
Quaternions
q
;
Matrix3s
R
;
e
<<
0.1
,
0.2
,
0.3
;
R
=
e2R
(
e
);
q
=
R2q
(
R
);
eo
=
q2e
(
q
.
coeffs
());
ASSERT_MATRIX_APPROX
(
eo
,
e
,
1e-10
);
}
int
main
(
int
argc
,
char
**
argv
)
{
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment