Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
kf_based_terrain_analysis
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iván del Pino
kf_based_terrain_analysis
Commits
c1078a46
Commit
c1078a46
authored
2 years ago
by
Iván del Pino
Browse files
Options
Downloads
Patches
Plain Diff
dumping dataset to file for nn training in matlab
parent
b314ad9f
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
include/kf_based_terrain_analysis.h
+13
-0
13 additions, 0 deletions
include/kf_based_terrain_analysis.h
include/structs_definitions.h
+3
-0
3 additions, 0 deletions
include/structs_definitions.h
src/kf_based_terrain_analysis.cpp
+114
-41
114 additions, 41 deletions
src/kf_based_terrain_analysis.cpp
with
130 additions
and
41 deletions
include/kf_based_terrain_analysis.h
+
13
−
0
View file @
c1078a46
...
...
@@ -12,6 +12,15 @@
#include
<pcl/search/kdtree.h>
#include
<pcl/filters/voxel_grid.h>
#include
<iostream>
//#include <sstream>
//#include <iomanip>
//#include <memory>
#include
<fstream>
#include
<string>
//#include <sys/stat.h>
//#include <cmath>
#include
"structs_definitions.h"
#include
"time_supervisor.h"
#include
"observation_downsampler.h"
...
...
@@ -24,6 +33,10 @@ private:
bool
use_full_covariance_matrices_
;
std
::
vector
<
Eigen
::
Matrix3d
>
references_covariance_matrix_vector_
;
std
::
ofstream
dataset_file_
;
bool
extract_data_to_external_training_of_the_network_
;
bool
first_iteration_
;
float
predictZ
(
const
pcl
::
PointXYZRGBNormal
reference
,
const
float
delta_x
,
const
float
delta_y
);
...
...
This diff is collapsed.
Click to expand it.
include/structs_definitions.h
+
3
−
0
View file @
c1078a46
...
...
@@ -166,6 +166,9 @@ struct FilteringConfiguration
float
mahalanobis_threshold
;
bool
use_neural_network
;
bool
extract_data_to_external_training_of_the_network
;
float
max_pred_std_dev_for_labelling
;
float
score_threshold
;
...
...
This diff is collapsed.
Click to expand it.
src/kf_based_terrain_analysis.cpp
+
114
−
41
View file @
c1078a46
...
...
@@ -4,11 +4,17 @@ CKf_Based_Terrain_Analysis::CKf_Based_Terrain_Analysis()
{
performance_supervisor_ptr_
=
boost
::
make_shared
<
CTimeSupervisor
>
();
use_full_covariance_matrices_
=
false
;
// TODO: Extract parameter!!
first_iteration_
=
true
;
std
::
cout
<<
"Ground terrain analysis processor created!"
<<
std
::
endl
;
}
CKf_Based_Terrain_Analysis
::~
CKf_Based_Terrain_Analysis
()
{
if
(
extract_data_to_external_training_of_the_network_
)
{
//std::cout << "Closing file!" << std::endl;
dataset_file_
.
close
();
}
}
void
CKf_Based_Terrain_Analysis
::
showPerformanceStatistics
(
void
)
...
...
@@ -998,15 +1004,19 @@ void CKf_Based_Terrain_Analysis::fastLabelPointcloudUsingGroundModel(
// 1) We create a vectors to store the features to be used with the Shallow Neural Network for
// ground classification
std
::
vector
<
int
>
features_indexes_in_pcl_cloud_ptr
;
std
::
vector
<
double
>
squared_distances
;
std
::
vector
<
double
>
incidence_angles
;
std
::
vector
<
double
>
intensities
;
std
::
vector
<
double
>
point_to_reference_squared_distances
;
std
::
vector
<
double
>
prediction_errors
;
std
::
vector
<
double
>
scores
;
std
::
vector
<
double
>
gt_label
;
// if (filtering_configuration.use_neural_network
// || filtering_configuration.extract_data_to_external_training_of_the_network)
// {
std
::
vector
<
int
>
features_indexes_in_pcl_cloud_ptr
;
std
::
vector
<
double
>
squared_distances
;
std
::
vector
<
double
>
incidence_angles
;
std
::
vector
<
double
>
intensities
;
std
::
vector
<
double
>
point_to_reference_squared_distances
;
std
::
vector
<
double
>
prediction_errors
;
std
::
vector
<
double
>
scores
;
std
::
vector
<
double
>
gt_label
;
// }
// 2) We point to the vector of indices related to the elevation_cloud point under evaluation
std
::
vector
<
std
::
vector
<
int
>>::
const_iterator
index_iterator
=
correspondence_indexes
.
begin
()
...
...
@@ -1034,25 +1044,29 @@ void CKf_Based_Terrain_Analysis::fastLabelPointcloudUsingGroundModel(
pcl
::
PointXYZRGBNormal
point_to_evaluate
=
pcl_cloud_ptr
->
points
[
*
point_iterator
];
features_indexes_in_pcl_cloud_ptr
.
push_back
(
*
point_iterator
);
// Index to modify the classification in a later step
//std::cout << "Index saved = " << *point_iterator << std::endl;
if
(
filtering_configuration
.
use_neural_network
||
filtering_configuration
.
extract_data_to_external_training_of_the_network
)
{
features_indexes_in_pcl_cloud_ptr
.
push_back
(
*
point_iterator
);
// Index to modify the classification in a later step
//std::cout << "Index saved = " << *point_iterator << std::endl;
squared_distances
.
push_back
(
(
double
)(
point_to_evaluate
.
x
*
point_to_evaluate
.
x
+
point_to_evaluate
.
y
*
point_to_evaluate
.
y
+
point_to_evaluate
.
z
*
point_to_evaluate
.
z
));
// Feature!
squared_distances
.
push_back
(
(
double
)(
point_to_evaluate
.
x
*
point_to_evaluate
.
x
+
point_to_evaluate
.
y
*
point_to_evaluate
.
y
+
point_to_evaluate
.
z
*
point_to_evaluate
.
z
));
// Feature!
incidence_angles
.
push_back
(
0.0
);
// TODO: Incidence angle w.r.t the plane defined by the ground reference // Feature!
intensities
.
push_back
(
point_to_evaluate
.
data_n
[
DATA_N_0_INTENSITY
]);
// Point intensity // Feature!
incidence_angles
.
push_back
(
0.0
);
// TODO: Incidence angle w.r.t the plane defined by the ground reference // Feature!
intensities
.
push_back
(
point_to_evaluate
.
data_n
[
DATA_N_0_INTENSITY
]);
// Point intensity // Feature!
double
delta_x
=
(
point_to_evaluate
.
x
-
reference_in_sensor_frame
.
x
);
double
delta_y
=
(
point_to_evaluate
.
y
-
reference_in_sensor_frame
.
y
);
double
delta_z
=
(
point_to_evaluate
.
z
-
reference_in_sensor_frame
.
z
);
double
delta_x
=
(
point_to_evaluate
.
x
-
reference_in_sensor_frame
.
x
);
double
delta_y
=
(
point_to_evaluate
.
y
-
reference_in_sensor_frame
.
y
);
double
delta_z
=
(
point_to_evaluate
.
z
-
reference_in_sensor_frame
.
z
);
point_to_reference_squared_distances
.
push_back
(
delta_x
*
delta_x
+
delta_y
*
delta_y
+
delta_z
*
delta_z
);
// Feature!
point_to_reference_squared_distances
.
push_back
(
delta_x
*
delta_x
+
delta_y
*
delta_y
+
delta_z
*
delta_z
);
// Feature!
prediction_errors
.
push_back
((
double
)
euclideanDistance
(
reference_in_sensor_frame
,
point_to_evaluate
));
// Prediction Error // Feature!
prediction_errors
.
push_back
((
double
)
euclideanDistance
(
reference_in_sensor_frame
,
point_to_evaluate
));
// Prediction Error // Feature!
scores
.
push_back
((
double
)
score
);
// Feature!
scores
.
push_back
((
double
)
score
);
// Feature!
}
pcl_cloud_ptr
->
points
[
*
point_iterator
].
data_c
[
DATA_C_1_ID_CLASS
]
=
(
float
)
CLASS_GROUND
+
score
;
}
...
...
@@ -1091,10 +1105,13 @@ void CKf_Based_Terrain_Analysis::fastLabelPointcloudUsingGroundModel(
}
}
}
int
num_of_ground_points
=
squared_distances
.
size
();
//std::cout << "num_of_ground_points = " << num_of_ground_points << std::endl;
if
(
num_of_ground_points
>
0
)
if
(
num_of_ground_points
>
0
&&
(
filtering_configuration
.
use_neural_network
||
filtering_configuration
.
extract_data_to_external_training_of_the_network
))
{
int
total_num_of_points
=
correspondence_indexes
[
point_in_sensor_frame
.
data_c
[
DATA_C_3_ORIGINAL_INDEX
]].
size
();
//std::cout << "total_num_of_points = " << total_num_of_points << std::endl;
...
...
@@ -1140,23 +1157,67 @@ void CKf_Based_Terrain_Analysis::fastLabelPointcloudUsingGroundModel(
int
randomIndex
=
std
::
rand
()
%
num_of_ground_points
;
// To save the dataset we will use only one random point of each elevation cloud
//std::cout << "randomIndex = " << randomIndex << std::endl;
Eigen
::
VectorXd
features
(
13
,
1
);
features
(
0
,
0
)
=
squared_distances
[
randomIndex
];
features
(
1
,
0
)
=
incidence_angles
[
randomIndex
];
features
(
2
,
0
)
=
intensities
[
randomIndex
];
features
(
3
,
0
)
=
point_to_reference_squared_distances
[
randomIndex
];
features
(
4
,
0
)
=
prediction_errors
[
randomIndex
];
features
(
5
,
0
)
=
scores
[
randomIndex
];
features
(
6
,
0
)
=
ratio_ground_points
;
features
(
7
,
0
)
=
mean_intensity_ground_points_in_cell
;
features
(
8
,
0
)
=
var_intensity_ground_points_in_cell
;
features
(
9
,
0
)
=
mean_prediction_error
;
features
(
10
,
0
)
=
var_prediction_error
;
features
(
11
,
0
)
=
mean_of_scores
;
features
(
12
,
0
)
=
var_of_scores
;
std
::
cout
<<
"features = "
<<
std
::
endl
<<
features
<<
std
::
endl
;
if
(
filtering_configuration
.
extract_data_to_external_training_of_the_network
)
{
int
gt_label
=
-
1
;
pcl
::
PointXYZRGBNormal
point_to_read_gt_label
=
pcl_cloud_ptr
->
points
[
features_indexes_in_pcl_cloud_ptr
[
randomIndex
]];
if
(
point_to_read_gt_label
.
r
==
R_CLASS_ROAD
&&
point_to_read_gt_label
.
g
==
G_CLASS_ROAD
&&
point_to_read_gt_label
.
b
==
B_CLASS_ROAD
)
gt_label
=
ROAD
;
if
(
point_to_read_gt_label
.
r
==
R_CLASS_TERRAIN
&&
point_to_read_gt_label
.
g
==
G_CLASS_TERRAIN
&&
point_to_read_gt_label
.
b
==
B_CLASS_TERRAIN
)
gt_label
=
TERRAIN
;
if
(
point_to_read_gt_label
.
r
==
R_CLASS_VEGETATION
&&
point_to_read_gt_label
.
g
==
G_CLASS_VEGETATION
&&
point_to_read_gt_label
.
b
==
B_CLASS_VEGETATION
)
gt_label
=
VEGETATION
;
if
(
point_to_read_gt_label
.
r
==
R_CLASS_SIDEWALK
&&
point_to_read_gt_label
.
g
==
G_CLASS_SIDEWALK
&&
point_to_read_gt_label
.
b
==
B_CLASS_SIDEWALK
)
gt_label
=
SIDEWALK
;
if
(
point_to_read_gt_label
.
r
==
R_CLASS_KITTI_OBSTACLE
&&
point_to_read_gt_label
.
g
==
G_CLASS_KITTI_OBSTACLE
&&
point_to_read_gt_label
.
b
==
B_CLASS_KITTI_OBSTACLE
)
gt_label
=
CLASS_OBSTACLE
;
assert
(
gt_label
!=
-
1
&&
"ERROR in CKf_Based_Terrain_Analysis::fastLabelPointcloudUsingGroundModel, unexpected class label!"
);
Eigen
::
VectorXd
features
(
13
,
1
);
features
(
0
,
0
)
=
squared_distances
[
randomIndex
];
features
(
1
,
0
)
=
incidence_angles
[
randomIndex
];
features
(
2
,
0
)
=
intensities
[
randomIndex
];
features
(
3
,
0
)
=
point_to_reference_squared_distances
[
randomIndex
];
features
(
4
,
0
)
=
prediction_errors
[
randomIndex
];
features
(
5
,
0
)
=
scores
[
randomIndex
];
features
(
6
,
0
)
=
ratio_ground_points
;
features
(
7
,
0
)
=
mean_intensity_ground_points_in_cell
;
features
(
8
,
0
)
=
var_intensity_ground_points_in_cell
;
features
(
9
,
0
)
=
mean_prediction_error
;
features
(
10
,
0
)
=
var_prediction_error
;
features
(
11
,
0
)
=
mean_of_scores
;
features
(
12
,
0
)
=
var_of_scores
;
//std::cout << "features = " << std::endl << features << std::endl;
std
::
setiosflags
(
std
::
ios
::
fixed
);
std
::
setprecision
(
6
);
std
::
ostringstream
s
;
s
<<
features
(
0
,
0
)
<<
", "
<<
features
(
1
,
0
)
<<
", "
<<
features
(
2
,
0
)
<<
", "
<<
features
(
3
,
0
)
<<
", "
<<
features
(
4
,
0
)
<<
", "
<<
features
(
5
,
0
)
<<
", "
<<
features
(
6
,
0
)
<<
", "
<<
features
(
7
,
0
)
<<
", "
<<
features
(
8
,
0
)
<<
", "
<<
features
(
9
,
0
)
<<
", "
<<
features
(
10
,
0
)
<<
", "
<<
features
(
11
,
0
)
<<
", "
<<
features
(
12
,
0
)
<<
", "
<<
gt_label
<<
std
::
endl
;
dataset_file_
<<
s
.
str
();
//std::cout << "gt_label = " << gt_label << std::endl;
}
}
}
else
// if we don't have enough information to try to predict the ground level at this point
...
...
@@ -1267,6 +1328,18 @@ void CKf_Based_Terrain_Analysis::groundSegmentation(
// if (filtering_configuration.measure_performance)
// CFunctionMonitor performance_monitor("groundSegmentation", performance_supervisor_ptr_);
extract_data_to_external_training_of_the_network_
=
filtering_configuration
.
extract_data_to_external_training_of_the_network
;
if
(
extract_data_to_external_training_of_the_network_
&&
first_iteration_
)
{
// std::string filename = "/mnt/DATA/Datasets/semantic_kitti/point_level_results_for_learning/dataset.txt";
std
::
string
filename
=
"/home/idelpino/Documentos/dataset.txt"
;
std
::
cout
<<
"Creating file "
<<
filename
.
c_str
()
<<
std
::
endl
;
dataset_file_
.
open
(
filename
.
c_str
(),
std
::
ios_base
::
trunc
);
}
first_iteration_
=
false
;
//std::cout << "Starting ground segmentation!!" << std::endl;
//std::cout << "Initializing pointcloud: Number of points in pcl_cloud = " << pcl_cloud.points.size() << std::endl;
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment