Skip to content
Snippets Groups Projects
Commit 65b57306 authored by Antonio Andriella's avatar Antonio Andriella
Browse files

test file for testing a sigle model

parent 32732675
No related branches found
No related tags found
No related merge requests found
...@@ -7,35 +7,47 @@ def import_data_from_csv(csv_filename, dag_filename): ...@@ -7,35 +7,47 @@ def import_data_from_csv(csv_filename, dag_filename):
print("Init model") print("Init model")
DAG = bn.import_DAG(dag_filename) DAG = bn.import_DAG(dag_filename)
df_caregiver = bn.sampling(DAG, n= 10000) df_caregiver = bn.sampling(DAG, n= 10000)
print("/************************************************************/") print("/************************************************************/")
print("real_user Model") print("real_user Model")
DAG_ = bn.import_DAG(dag_filename, CPD=False) DAG_real_user_no_cpd = bn.import_DAG(dag_filename, CPD=False)
df_real_user = pd.read_csv(csv_filename) df_real_user = pd.read_csv(csv_filename)
DAG_real_user = bn.parameter_learning.fit(DAG_, df_real_user, methodtype='bayes') DAG_real_user = bn.parameter_learning.fit(DAG_real_user_no_cpd, df_real_user, methodtype='bayes')
df_real_user = bn.sampling(DAG_real_user, n=10000) df_real_user = bn.sampling(DAG_real_user, n=10000)
print("/************************************************************/") print("/************************************************************/")
print("Shared knowledge") print("Shared knowledge")
DAG_ = bn.import_DAG(dag_filename, CPD=False) DAG_shared_no_cpd = bn.import_DAG(dag_filename, CPD=False)
shared_knowledge = [df_real_user, df_caregiver] shared_knowledge = [df_real_user, df_caregiver]
conc_shared_knowledge = pd.concat(shared_knowledge) conc_shared_knowledge = pd.concat(shared_knowledge)
DAG_shared = bn.parameter_learning.fit(DAG_, conc_shared_knowledge) DAG_shared = bn.parameter_learning.fit(DAG_shared_no_cpd, conc_shared_knowledge)
df_conc_shared_knowledge = bn.sampling(DAG_shared, n=10000) df_conc_shared_knowledge = bn.sampling(DAG_shared, n=10000)
return DAG_shared return DAG_shared
import_data_from_csv(csv_filename='bn_persona_model/cognitive_game.csv', dag_filename='bn_persona_model/persona_model_test.bif') DAG_shared = import_data_from_csv(csv_filename='bn_persona_model/cognitive_game.csv', dag_filename='bn_persona_model/persona_model_test.bif')
# DAG = bn.import_DAG('bn_persona_model/persona_model_test.bif') # DAG = bn.import_DAG('bn_persona_model/persona_model_test.bif')
# G = bn.plot(DAG) # #G = bn.plot(DAG)
# q1 = bn.inference.fit(DAG, variables=[ 'user_action'], evidence={ #
# 'game_state': 0, # q_origin = bn.inference.fit(DAG, variables=[ 'user_action'], evidence={
# 'game_state':0,
# 'attempt':0,
# 'agent_feedback':0,
# 'agent_assistance':0,
# })
# q_shared = bn.inference.fit(DAG_shared, variables=[ 'user_action'], evidence={
# 'game_state':0,
# 'attempt':0, # 'attempt':0,
# 'agent_feedback':1, # 'agent_feedback':1,
# 'memory': 0, # 'user_memory': 2,
# 'reactivity':0, # 'user_reactivity':2,
# 'agent_assistance':0, # 'agent_assistance':0,
#
# }) # })
#
# print("Q origin: ", q_origin.values, " Q shared ", q_shared.values)
# df = pd.read_csv('bn_persona_model/cognitive_game.csv') # df = pd.read_csv('bn_persona_model/cognitive_game.csv')
# df = bn.sampling(DAG, n=10000) # df = bn.sampling(DAG, n=10000)
# #model_sl = bn.structure_learning.fit(df, methodtype='hc', scoretype='bic') # #model_sl = bn.structure_learning.fit(df, methodtype='hc', scoretype='bic')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment