diff --git a/test.py b/test.py index a2d2d907fa5a2e3bfa600c16fb579d7e9b8bf4c2..a5ec2a8049cf2a8b6749b444c611b0257a82f908 100644 --- a/test.py +++ b/test.py @@ -7,35 +7,47 @@ def import_data_from_csv(csv_filename, dag_filename): print("Init model") DAG = bn.import_DAG(dag_filename) df_caregiver = bn.sampling(DAG, n= 10000) + print("/************************************************************/") print("real_user Model") - DAG_ = bn.import_DAG(dag_filename, CPD=False) + DAG_real_user_no_cpd = bn.import_DAG(dag_filename, CPD=False) df_real_user = pd.read_csv(csv_filename) - DAG_real_user = bn.parameter_learning.fit(DAG_, df_real_user, methodtype='bayes') + DAG_real_user = bn.parameter_learning.fit(DAG_real_user_no_cpd, df_real_user, methodtype='bayes') df_real_user = bn.sampling(DAG_real_user, n=10000) print("/************************************************************/") print("Shared knowledge") - DAG_ = bn.import_DAG(dag_filename, CPD=False) + DAG_shared_no_cpd = bn.import_DAG(dag_filename, CPD=False) shared_knowledge = [df_real_user, df_caregiver] conc_shared_knowledge = pd.concat(shared_knowledge) - DAG_shared = bn.parameter_learning.fit(DAG_, conc_shared_knowledge) + DAG_shared = bn.parameter_learning.fit(DAG_shared_no_cpd, conc_shared_knowledge) df_conc_shared_knowledge = bn.sampling(DAG_shared, n=10000) return DAG_shared -import_data_from_csv(csv_filename='bn_persona_model/cognitive_game.csv', dag_filename='bn_persona_model/persona_model_test.bif') +DAG_shared = import_data_from_csv(csv_filename='bn_persona_model/cognitive_game.csv', dag_filename='bn_persona_model/persona_model_test.bif') + + # DAG = bn.import_DAG('bn_persona_model/persona_model_test.bif') -# G = bn.plot(DAG) -# q1 = bn.inference.fit(DAG, variables=[ 'user_action'], evidence={ -# 'game_state': 0, +# #G = bn.plot(DAG) +# +# q_origin = bn.inference.fit(DAG, variables=[ 'user_action'], evidence={ +# 'game_state':0, +# 'attempt':0, +# 'agent_feedback':0, +# 'agent_assistance':0, +# }) + +# q_shared = bn.inference.fit(DAG_shared, variables=[ 'user_action'], evidence={ +# 'game_state':0, # 'attempt':0, # 'agent_feedback':1, -# 'memory': 0, -# 'reactivity':0, +# 'user_memory': 2, +# 'user_reactivity':2, # 'agent_assistance':0, -# # }) +# +# print("Q origin: ", q_origin.values, " Q shared ", q_shared.values) # df = pd.read_csv('bn_persona_model/cognitive_game.csv') # df = bn.sampling(DAG, n=10000) # #model_sl = bn.structure_learning.fit(df, methodtype='hc', scoretype='bic')