Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
BN_GenerativeModel
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Antonio Andriella
BN_GenerativeModel
Commits
18a70aec
Commit
18a70aec
authored
4 years ago
by
Antonio Andriella
Browse files
Options
Downloads
Patches
Plain Diff
code refactoring
parent
f11e8a4e
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
main.py
+29
-19
29 additions, 19 deletions
main.py
persona_model.bif
+0
-0
0 additions, 0 deletions
persona_model.bif
with
29 additions
and
19 deletions
main.py
+
29
−
19
View file @
18a70aec
...
...
@@ -50,11 +50,6 @@ class Attempt(enum.Enum):
name
=
"
attempt
"
counter
=
4
model
=
bnlearn
.
import_DAG
(
'
persona_model_4.bif
'
)
print
(
"
user_action -> attempt
"
,
model
[
'
model
'
].
cpds
[
0
].
values
)
print
(
"
user_action -> game_state
"
,
model
[
'
model
'
].
cpds
[
2
].
values
)
print
(
"
robot_feedback -> robot_assistance
"
,
model
[
'
model
'
].
cpds
[
5
].
values
)
print
(
"
user_action -> reactivity, memory
"
,
model
[
'
model
'
].
cpds
[
6
].
values
)
def
plot2D
(
save_path
,
n_episodes
,
*
y
):
...
...
@@ -132,7 +127,7 @@ def generate_user_action(actions_prob):
return
action_id
def
simulation
(
robot_assistance_vect
,
robot_feedback_vect
,
memory
,
attention
,
reactivity
,
epochs
=
50
,
non_stochastic
=
False
):
def
simulation
(
robot_assistance_vect
,
robot_feedback_vect
,
persona_cpds
,
memory
,
attention
,
reactivity
,
epochs
=
50
,
task_complexity
=
5
,
non_stochastic
=
False
):
#metrics we need in order to compute the afterwords the belief
'''
CPD 0: for each attempt 1 to 4 store the number of correct, wrong and timeout
...
...
@@ -160,16 +155,16 @@ def simulation(robot_assistance_vect, robot_feedback_vect, memory, attention, re
for
e
in
range
(
epochs
):
'''
Simulation framework
'''
task_complexity
=
5
#counters
task_evolution
=
0
attempt_counter
=
0
game_state_counter
=
0
iter_counter
=
0
correct_move_counter
=
0
wrong_move_counter
=
0
timeout_counter
=
0
while
(
task_evolution
<=
task_complexity
):
#these, if then else are necessary to classify the task game state into beg, mid, end
if
task_evolution
>=
0
and
task_evolution
<=
2
:
game_state_counter
=
0
elif
task_evolution
>=
3
and
task_evolution
<=
4
:
...
...
@@ -182,7 +177,7 @@ def simulation(robot_assistance_vect, robot_feedback_vect, memory, attention, re
robot_feedback_action
=
random
.
randint
(
min
(
robot_feedback_vect
),
max
(
robot_feedback_vect
))
print
(
"
robot_assistance {}, attempt {}, game {}, robot_feedback {}
"
.
format
(
robot_assistance_action
,
attempt_counter
,
game_state_counter
,
robot_feedback_action
))
query
=
bnlearn
.
inference
.
fit
(
model
,
variables
=
[
'
user_action
'
],
evidence
=
{
'
robot_assistance
'
:
robot_assistance_action
,
query
=
bnlearn
.
inference
.
fit
(
persona_cpds
,
variables
=
[
'
user_action
'
],
evidence
=
{
'
robot_assistance
'
:
robot_assistance_action
,
'
attempt
'
:
attempt_counter
,
'
game_state
'
:
game_state_counter
,
'
robot_feedback
'
:
robot_feedback_action
,
...
...
@@ -193,22 +188,27 @@ def simulation(robot_assistance_vect, robot_feedback_vect, memory, attention, re
#generate a random number and trigger one of the three possible action
user_action
=
generate_user_action
(
query
.
values
)
#np.argmax(query.values, axis=0)
#updates counters for plots
robot_assistance_per_feedback
[
robot_feedback_action
][
robot_assistance_action
]
+=
1
attempt_counter_per_action
[
user_action
][
attempt_counter
]
+=
1
game_state_counter_per_action
[
user_action
][
game_state_counter
]
+=
1
robot_feedback_per_action
[
user_action
][
robot_feedback_action
]
+=
1
#updates counters for simulation
iter_counter
+=
1
if
user_action
==
0
:
attempt_counter
=
0
task_evolution
+=
1
correct_move_counter
+=
1
#if the user made a wrong move and still did not reach the maximum number of attempts
elif
user_action
==
1
and
attempt_counter
<
3
:
attempt_counter
+=
1
wrong_move_counter
+=
1
# if the user did not move any token and still did not reach the maximum number of attempts
elif
user_action
==
2
and
attempt_counter
<
3
:
attempt_counter
+=
1
wrong_move_counter
+=
1
# the robot or therapist makes the correct move on the patient behalf
else
:
attempt_counter
=
0
task_evolution
+=
1
...
...
@@ -223,25 +223,27 @@ def simulation(robot_assistance_vect, robot_feedback_vect, memory, attention, re
print
(
"
iter {}, correct {}, wrong {}, timeout {}
"
.
format
(
iter_counter
,
correct_move_counter
,
wrong_move_counter
,
timeout_counter
))
print
(
"
correct_move {}, wrong_move {}, timeout {}
"
.
format
(
correct_move_counter
,
wrong_move_counter
,
timeout_counter
))
#transform counters into probabilities
prob_over_attempt_per_action
=
compute_prob
(
attempt_counter_per_action
)
prob_over_game_per_action
=
compute_prob
(
game_state_counter_per_action
)
prob_over_feedback_per_action
=
compute_prob
(
robot_feedback_per_action
)
prob_over_assistance_per_feedback
=
compute_prob
(
robot_assistance_per_feedback
)
#average the probabilities obtained with the cpdf tables
updated_prob_over_attempt_per_action
=
average_prob
(
np
.
transpose
(
model
[
'
model
'
].
cpds
[
0
].
values
),
updated_prob_over_attempt_per_action
=
average_prob
(
np
.
transpose
(
persona_cpds
[
'
model
'
].
cpds
[
0
].
values
),
prob_over_attempt_per_action
)
updated_prob_over_game_per_action
=
average_prob
(
np
.
transpose
(
model
[
'
model
'
].
cpds
[
2
].
values
),
updated_prob_over_game_per_action
=
average_prob
(
np
.
transpose
(
persona_cpds
[
'
model
'
].
cpds
[
2
].
values
),
prob_over_game_per_action
)
updated_prob_over_feedback_per_action
=
average_prob
(
np
.
transpose
(
model
[
'
model
'
].
cpds
[
6
].
values
),
updated_prob_over_feedback_per_action
=
average_prob
(
np
.
transpose
(
persona_cpds
[
'
model
'
].
cpds
[
6
].
values
),
prob_over_feedback_per_action
)
updated_prob_over_assistance_per_feedback
=
average_prob
(
np
.
transpose
(
model
[
'
model
'
].
cpds
[
5
].
values
),
updated_prob_over_assistance_per_feedback
=
average_prob
(
np
.
transpose
(
persona_cpds
[
'
model
'
].
cpds
[
5
].
values
),
prob_over_assistance_per_feedback
)
model
[
'
model
'
].
cpds
[
0
].
values
=
np
.
transpose
(
updated_prob_over_attempt_per_action
)
model
[
'
model
'
].
cpds
[
2
].
values
=
np
.
transpose
(
updated_prob_over_game_per_action
)
model
[
'
model
'
].
cpds
[
6
].
values
=
np
.
transpose
(
updated_prob_over_feedback_per_action
)
model
[
'
model
'
].
cpds
[
5
].
values
=
np
.
transpose
(
updated_prob_over_assistance_per_feedback
)
persona_cpds
[
'
model
'
].
cpds
[
0
].
values
=
np
.
transpose
(
updated_prob_over_attempt_per_action
)
persona_cpds
[
'
model
'
].
cpds
[
2
].
values
=
np
.
transpose
(
updated_prob_over_game_per_action
)
persona_cpds
[
'
model
'
].
cpds
[
6
].
values
=
np
.
transpose
(
updated_prob_over_feedback_per_action
)
persona_cpds
[
'
model
'
].
cpds
[
5
].
values
=
np
.
transpose
(
updated_prob_over_assistance_per_feedback
)
n_correct_per_episode
[
e
]
=
correct_move_counter
n_wrong_per_episode
[
e
]
=
wrong_move_counter
...
...
@@ -252,8 +254,16 @@ def simulation(robot_assistance_vect, robot_feedback_vect, memory, attention, re
robot_assistance
=
[
i
for
i
in
range
(
Robot_Assistance
.
counter
.
value
)]
robot_feedback
=
[
i
for
i
in
range
(
Robot_Feedback
.
counter
.
value
)]
epochs
=
10
#initialise memory, attention and reactivity varibles
memory
=
0
;
attention
=
0
;
reactivity
=
1
;
results
=
simulation
(
robot_assistance
,
robot_feedback
,
memory
,
attention
,
reactivity
,
10
)
#run a simulation
persona_cpds
=
bnlearn
.
import_DAG
(
'
persona_model.bif
'
)
print
(
"
user_action -> attempt
"
,
persona_cpds
[
'
model
'
].
cpds
[
0
].
values
)
print
(
"
user_action -> game_state
"
,
persona_cpds
[
'
model
'
].
cpds
[
2
].
values
)
print
(
"
robot_feedback -> robot_assistance
"
,
persona_cpds
[
'
model
'
].
cpds
[
5
].
values
)
print
(
"
user_action -> reactivity, memory
"
,
persona_cpds
[
'
model
'
].
cpds
[
6
].
values
)
results
=
simulation
(
robot_assistance
,
robot_feedback
,
persona_cpds
,
memory
,
attention
,
reactivity
,
epochs
=
10
,
task_complexity
=
5
,
non_stochastic
=
False
)
plot_path
=
"
epoch_
"
+
str
(
epochs
)
+
"
_memory_
"
+
str
(
memory
)
+
"
_attention_
"
+
str
(
attention
)
+
"
_reactivity_
"
+
str
(
reactivity
)
+
"
.jpg
"
plot2D
(
plot_path
,
epochs
,
results
)
...
...
This diff is collapsed.
Click to expand it.
persona_model
_4
.bif
→
persona_model.bif
+
0
−
0
View file @
18a70aec
File moved
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment