Skip to content
Snippets Groups Projects
Commit f11e8a4e authored by Antonio Andriella's avatar Antonio Andriella
Browse files

version with simulation and plots

parent 611495d0
No related branches found
No related tags found
No related merge requests found
......@@ -2,6 +2,7 @@ import bnlearn
import numpy as np
import enum
import random
import matplotlib.pyplot as plt
#define constants
class User_Action(enum.Enum):
......@@ -55,12 +56,46 @@ print("user_action -> game_state ", model['model'].cpds[2].values)
print("robot_feedback -> robot_assistance ", model['model'].cpds[5].values)
print("user_action -> reactivity, memory ", model['model'].cpds[6].values)
def plot2D(save_path, n_episodes, *y):
# The position of the bars on the x-axis
barWidth = 0.35
r = np.arange(n_episodes) # the x locations for the groups
# Get values from the group and categories
x = [i for i in range(n_episodes)]
correct = y[0][0]
wrong = y[0][1]
timeout = y[0][2]
# add colors
#colors = ['#FF9999', '#00BFFF', '#C1FFC1', '#CAE1FF', '#FFDEAD']
# plot bars
plt.figure(figsize=(10, 7))
plt.bar(r, correct, edgecolor='white', width=barWidth, label="correct")
plt.bar(r, wrong, bottom=np.array(correct), edgecolor='white', width=barWidth, label='wrong')
plt.bar(r, timeout, bottom=np.array(correct) + np.array(wrong), edgecolor='white',
width=barWidth, label='timeout')
plt.legend()
# Custom X axis
plt.xticks(r, x, fontweight='bold')
plt.ylabel("performance")
plt.savefig(save_path)
plt.show()
def compute_prob(cpds_table):
'''
Given the counters generate the probability distributions
Args:
cpds_table: with counters
Return:
the probs for the cpds table
'''
for val in range(len(cpds_table)):
cpds_table[val] = list(map(lambda x: x / (sum(cpds_table[val])+0.00001), cpds_table[val]))
return cpds_table
def avg_prob(ref_cpds_table, current_cpds_table):
def average_prob(ref_cpds_table, current_cpds_table):
'''
Args:
ref_cpds_table: table from bnlearn
......@@ -74,129 +109,157 @@ def avg_prob(ref_cpds_table, current_cpds_table):
res_cpds_table[elem1][elem2] = (ref_cpds_table[elem1][elem2]+current_cpds_table[elem1][elem2])/2
return res_cpds_table
def generate_user_action(actions_prob):
'''
Select one of the actions according to the actions_prob
Args:
actions_prob: the result of the query to the BN
Return:
the id of the selected action
'''
action_id = 0
correct_action = actions_prob[0]
wrong_action = actions_prob[1]
timeout = actions_prob[2]
rnd_val = random.random()
if rnd_val<=correct_action:
action_id = 0
elif rnd_val>correct_action \
and rnd_val<correct_action+wrong_action:
action_id = 1
else:
action_id = 2
return action_id
def simulation(robot_assistance_vect, robot_feedback_vect):
def simulation(robot_assistance_vect, robot_feedback_vect, memory, attention, reactivity, epochs=50, non_stochastic=False):
#metrics we need in order to compute the afterwords the belief
'''
CPD 0: for each attempt 1 to 4 store the number of correct, wrong and timeout
'''
attempt_counter_per_action = [[0 for j in range(User_Action.counter.value)] for i in range(Attempt.counter.value)]
attempt_counter_per_action = [[0 for i in range(Attempt.counter.value)] for j in range(User_Action.counter.value)]
'''
CPD 2: for each game_state 0 to 2 store the number of correct, wrong and timeout
'''
game_state_counter_per_action = [[0 for j in range(User_Action.counter.value)] for i in range(Game_State.counter.value)]
game_state_counter_per_action = [[0 for i in range(Game_State.counter.value)] for j in range(User_Action.counter.value)]
'''
CPD 5: for each robot feedback store the number of correct, wrong and timeout
'''
robot_feedback_per_action = [[0 for j in range(User_Action.counter.value)] for i in range(Robot_Feedback.counter.value)]
robot_feedback_per_action = [[0 for i in range(Robot_Feedback.counter.value)] for j in range(User_Action.counter.value)]
'''
CPD 6: for each robot assistance store the number of pos and neg feedback
'''
robot_assistance_per_feedback = [[0 for j in range(Robot_Feedback.counter.value)] for i in range(Robot_Assistance.counter.value)]
task_complexity = 5
task_evolution = 0
attempt_counter = 0
game_state_counter = 0
iter_counter = 0
correct_move_counter = 0
wrong_move_counter = 0
timeout_counter = 0
'''Simulation framework'''
while(task_evolution<=task_complexity):
if task_evolution>=0 and task_evolution<=2:
game_state_counter = 0
elif task_evolution>=3 and task_evolution<=4:
game_state_counter = 1
else:
game_state_counter = 2
#select robot assistance
robot_assistance_action = random.randint(min(robot_assistance_vect), max(robot_assistance_vect))
#select robot feedback
robot_feedback_action = random.randint(min(robot_feedback_vect), max(robot_feedback_vect))
print("robot_assistance {}, attempt {}, game {}, robot_feedback {}".format(robot_assistance_action, attempt_counter, game_state_counter, robot_feedback_action))
query = bnlearn.inference.fit(model, variables=['user_action'], evidence={'robot_assistance': robot_assistance_action,
'attempt': attempt_counter,
'game_state': game_state_counter,
'robot_feedback': robot_feedback_action,
'memory': 0,
'attention': 0,
'reactivity': 0
})
user_move_action = np.argmax(query.values, axis=0)
robot_assistance_per_feedback[robot_assistance_action][robot_feedback_action] += 1
attempt_counter_per_action[attempt_counter][user_move_action] += 1
game_state_counter_per_action[game_state_counter][user_move_action] += 1
robot_feedback_per_action[robot_feedback_action][user_move_action] += 1
iter_counter += 1
if user_move_action == 0:
attempt_counter += 0
task_evolution += 1
correct_move_counter += 1
elif user_move_action == 1 and attempt_counter<3:
attempt_counter += 1
wrong_move_counter += 1
elif user_move_action == 2 and attempt_counter<3:
attempt_counter += 1
wrong_move_counter += 1
else:
attempt_counter += 0
task_evolution += 1
timeout_counter += 1
print("correct {}, wrong {}, timeout {}".format(query.values[0],
query.values[1],
query.values[2]))
print("robot_assistance_per_feedback {}".format(robot_assistance_per_feedback))
print("attempt_counter_per_action {}".format(attempt_counter_per_action))
print("game_state_counter_per_action {}".format(game_state_counter_per_action))
print("robot_feedback_per_action {}".format(robot_feedback_per_action))
print("iter {}, correct {}, wrong {}, timeout {}".format(iter_counter, correct_move_counter, wrong_move_counter, timeout_counter))
return attempt_counter_per_action, game_state_counter_per_action, robot_assistance_per_feedback, robot_feedback_per_action
robot_assistance_vect = [0, 1, 2, 3, 4]
robot_feedback_vect = [0, 1]
attempt_counter_per_action, game_state_counter_per_action, \
robot_assistance_per_feedback, robot_feedback_per_action = simulation(robot_assistance_vect, robot_feedback_vect)
print("************BEFORE*************")
print(model['model'].cpds[0].values)
print(model['model'].cpds[2].values)
print(model['model'].cpds[5].values)
print(model['model'].cpds[6].values)
prob_over_attempt_per_action = compute_prob(attempt_counter_per_action)
prob_over_game_per_action = compute_prob(game_state_counter_per_action)
prob_over_feedback_per_action = compute_prob(robot_feedback_per_action)
prob_over_assistance_per_feedback = compute_prob(robot_assistance_per_feedback)
print("************DURING*************")
print(prob_over_attempt_per_action)
print(prob_over_game_per_action)
print(prob_over_feedback_per_action)
print(prob_over_assistance_per_feedback)
res_prob_over_attempt_per_action = avg_prob(model['model'].cpds[0].values,
prob_over_attempt_per_action)
res_prob_over_game_per_action = avg_prob(model['model'].cpds[2].values,
prob_over_game_per_action)
res_prob_over_feedback_per_action = avg_prob(model['model'].cpds[6].values,
prob_over_feedback_per_action)
res_prob_over_assistance_per_feedback = avg_prob(model['model'].cpds[5].values,
prob_over_assistance_per_feedback)
print("************AFTER*************")
print(res_prob_over_attempt_per_action)
print(res_prob_over_game_per_action)
print(res_prob_over_feedback_per_action)
print(res_prob_over_assistance_per_feedback)
robot_assistance_per_feedback = [[0 for i in range(Robot_Assistance.counter.value)] for j in range(Robot_Feedback.counter.value)]
#output variables:
n_correct_per_episode = [0]*epochs
n_wrong_per_episode = [0]*epochs
n_timeout_per_episode = [0]*epochs
for e in range(epochs):
'''Simulation framework'''
task_complexity = 5
task_evolution = 0
attempt_counter = 0
game_state_counter = 0
iter_counter = 0
correct_move_counter = 0
wrong_move_counter = 0
timeout_counter = 0
while(task_evolution<=task_complexity):
if task_evolution>=0 and task_evolution<=2:
game_state_counter = 0
elif task_evolution>=3 and task_evolution<=4:
game_state_counter = 1
else:
game_state_counter = 2
#select robot assistance
robot_assistance_action = random.randint(min(robot_assistance_vect), max(robot_assistance_vect))
#select robot feedback
robot_feedback_action = random.randint(min(robot_feedback_vect), max(robot_feedback_vect))
print("robot_assistance {}, attempt {}, game {}, robot_feedback {}".format(robot_assistance_action, attempt_counter, game_state_counter, robot_feedback_action))
query = bnlearn.inference.fit(model, variables=['user_action'], evidence={'robot_assistance': robot_assistance_action,
'attempt': attempt_counter,
'game_state': game_state_counter,
'robot_feedback': robot_feedback_action,
'memory': memory,
'attention': attention,
'reactivity': reactivity
})
#generate a random number and trigger one of the three possible action
user_action = generate_user_action(query.values)#np.argmax(query.values, axis=0)
robot_assistance_per_feedback[robot_feedback_action][robot_assistance_action] += 1
attempt_counter_per_action[user_action][attempt_counter] += 1
game_state_counter_per_action[user_action][game_state_counter] += 1
robot_feedback_per_action[user_action][robot_feedback_action] += 1
iter_counter += 1
if user_action == 0:
attempt_counter = 0
task_evolution += 1
correct_move_counter += 1
elif user_action == 1 and attempt_counter<3:
attempt_counter += 1
wrong_move_counter += 1
elif user_action == 2 and attempt_counter<3:
attempt_counter += 1
wrong_move_counter += 1
else:
attempt_counter = 0
task_evolution += 1
timeout_counter += 1
print("task_evolution {}, attempt_counter {}, timeout_counter {}".format(task_evolution, iter_counter, timeout_counter))
print("robot_assistance_per_feedback {}".format(robot_assistance_per_feedback))
print("attempt_counter_per_action {}".format(attempt_counter_per_action))
print("game_state_counter_per_action {}".format(game_state_counter_per_action))
print("robot_feedback_per_action {}".format(robot_feedback_per_action))
print("iter {}, correct {}, wrong {}, timeout {}".format(iter_counter, correct_move_counter, wrong_move_counter, timeout_counter))
print("correct_move {}, wrong_move {}, timeout {}".format(correct_move_counter, wrong_move_counter, timeout_counter))
#transform counters into probabilities
prob_over_attempt_per_action = compute_prob(attempt_counter_per_action)
prob_over_game_per_action = compute_prob(game_state_counter_per_action)
prob_over_feedback_per_action = compute_prob(robot_feedback_per_action)
prob_over_assistance_per_feedback = compute_prob(robot_assistance_per_feedback)
#average the probabilities obtained with the cpdf tables
updated_prob_over_attempt_per_action = average_prob(np.transpose(model['model'].cpds[0].values),
prob_over_attempt_per_action)
updated_prob_over_game_per_action = average_prob(np.transpose(model['model'].cpds[2].values),
prob_over_game_per_action)
updated_prob_over_feedback_per_action = average_prob(np.transpose(model['model'].cpds[6].values),
prob_over_feedback_per_action)
updated_prob_over_assistance_per_feedback = average_prob(np.transpose(model['model'].cpds[5].values),
prob_over_assistance_per_feedback)
model['model'].cpds[0].values = np.transpose(updated_prob_over_attempt_per_action)
model['model'].cpds[2].values = np.transpose(updated_prob_over_game_per_action)
model['model'].cpds[6].values = np.transpose(updated_prob_over_feedback_per_action)
model['model'].cpds[5].values = np.transpose(updated_prob_over_assistance_per_feedback)
n_correct_per_episode[e] = correct_move_counter
n_wrong_per_episode[e] = wrong_move_counter
n_timeout_per_episode[e] = timeout_counter
return n_correct_per_episode, n_wrong_per_episode, n_timeout_per_episode
robot_assistance = [i for i in range(Robot_Assistance.counter.value)]
robot_feedback = [i for i in range(Robot_Feedback.counter.value)]
epochs = 10
memory = 0; attention = 0; reactivity = 1;
results = simulation(robot_assistance, robot_feedback, memory, attention, reactivity, 10)
plot_path = "epoch_"+str(epochs)+"_memory_"+str(memory)+"_attention_"+str(attention)+"_reactivity_"+str(reactivity)+".jpg"
plot2D(plot_path, epochs, results)
#TODO
'''
- define a function that takes the state as input and return the user action and its reaction time
- evalute if the persona is wrong how long does it take for the simulator to detect that
- check percentages
'''
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment