Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
GOAL
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Antonio Andriella
GOAL
Commits
56f0d07b
Commit
56f0d07b
authored
4 years ago
by
Antonio Andriella
Browse files
Options
Downloads
Patches
Plain Diff
working version
parent
42571017
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main.py
+43
-60
43 additions, 60 deletions
main.py
with
43 additions
and
60 deletions
main.py
+
43
−
60
View file @
56f0d07b
...
...
@@ -147,18 +147,16 @@ def main():
#################GENERATE SIMULATION################################
# SIMULATION PARAMS
epochs
=
1
0
epochs
=
2
0
scaling_factor
=
1
# initialise the agent
bn_model_caregiver_assistance
=
bnlearn
.
import_DAG
(
'
/home/pal/Documents/Framework/bn_generative_model/bn_agent_model/agent_assistive_model.bif
'
)
bn_model_caregiver_feedback
=
None
#bnlearn.import_DAG('/home/pal/Documents/Framework/bn_generative_model/bn_agent_model/agent_feedback_model.bif')
bn_model_user_action
=
bnlearn
.
import_DAG
(
'
/home/pal/Documents/Framework/bn_generative_model/bn_persona_model/user_action_model.bif
'
)
bn_model_user_react_time
=
bnlearn
.
import_DAG
(
'
/home/pal/Documents/Framework/bn_generative_model/bn_persona_model/user_react_time_model.bif
'
)
bn_model_user_action_filename
=
'
/home/pal/Documents/Framework/bn_generative_model/bn_persona_model/persona_model_test.bif
'
bn_model_user_action
=
bnlearn
.
import_DAG
(
bn_model_user_action_filename
)
#setup by the caregiver
user_pref_assistance
=
2
agent_behaviour
=
"
challenge
"
# initialise memory, attention and reactivity variables
persona_memory
=
0
;
persona_attention
=
0
;
persona_reactivity
=
1
;
# define state space struct for the irl algorithm
episode_instance
=
Episode
()
...
...
@@ -179,25 +177,22 @@ def main():
terminal_state
=
[(
Game_State
.
counter
.
value
,
i
,
user_action
[
j
])
for
i
in
range
(
1
,
Attempt
.
counter
.
value
+
1
)
for
j
in
range
(
len
(
user_action
))]
initial_state
=
(
1
,
1
,
0
)
agent_policy
=
[
0
for
s
in
state_space
]
#1. RUN THE SIMULATION WITH THE PARAMS SET BY THE CAREGIVER
game_performance_per_episode
,
react_time_per_episode
,
agent_assistance_per_episode
,
agent_feedback_per_episode
,
episodes_list
=
\
Sim
.
simulation
(
bn_model_user_action
=
bn_model_user_action
,
var_user_action_target_action
=
[
'
user_action
'
],
bn_model_user_react_time
=
bn_model_user_react_time
,
var_user_react_time_target_action
=
[
'
user_react_time
'
],
user_memory_name
=
"
memory
"
,
user_memory_value
=
persona_memory
,
user_attention_name
=
"
attention
"
,
user_attention_value
=
persona_attention
,
user_reactivity_name
=
"
reactivity
"
,
user_reactivity_value
=
persona_reactivity
,
task_progress_name
=
"
game_state
"
,
game_attempt_name
=
"
attempt
"
,
agent_assistance_name
=
"
agent_assistance
"
,
agent_feedback_name
=
"
agent_feedback
"
,
bn_model_agent_assistance
=
bn_model_caregiver_assistance
,
var_agent_assistance_target_action
=
[
"
agent_assistance
"
],
bn_model_agent_feedback
=
bn_model_caregiver_feedback
,
var_agent_feedback_target_action
=
[
"
agent_feedback
"
],
agent_policy
=
None
,
state_space
=
states_space_list
,
action_space
=
action_space_list
,
epochs
=
epochs
,
task_complexity
=
5
,
max_attempt_per_object
=
4
)
Sim
.
simulation
(
bn_model_user_action
=
bn_model_user_action
,
var_user_action_target_action
=
[
'
user_action
'
],
game_state_bn_name
=
"
game_state
"
,
attempt_bn_name
=
"
attempt
"
,
agent_assistance_bn_name
=
"
agent_assistance
"
,
agent_feedback_bn_name
=
"
agent_feedback
"
,
user_pref_assistance
=
user_pref_assistance
,
agent_behaviour
=
agent_behaviour
,
agent_policy
=
[],
state_space
=
states_space_list
,
action_space
=
action_space_list
,
epochs
=
epochs
,
task_complexity
=
5
,
max_attempt_per_object
=
4
,
alpha_learning
=
0.1
)
#2. GIVEN THE EPISODES ESTIMATE R(S) and PI(S)
...
...
@@ -207,9 +202,9 @@ def main():
if
not
os
.
path
.
exists
(
full_path
):
os
.
mkdir
(
full_path
)
plot_game_performance_path
=
"
SIM_game_performance_
"
+
"
epoch_
"
+
str
(
epochs
)
+
"
_persona_memory_
"
+
str
(
persona_memory
)
+
"
_persona_attention_
"
+
str
(
persona_attention
)
+
"
_persona_reactivity_
"
+
str
(
persona_reactivity
)
+
"
.jpg
"
plot_agent_assistance_path
=
"
SIM_agent_assistance_
"
+
"
epoch_
"
+
str
(
epochs
)
+
"
_persona_memory_
"
+
str
(
persona_memory
)
+
"
_persona_attention_
"
+
str
(
persona_attention
)
+
"
_persona_reactivity_
"
+
str
(
persona_reactivity
)
+
"
.jpg
"
plot_agent_feedback_path
=
"
SIM_agent_feedback_
"
+
"
epoch_
"
+
str
(
epochs
)
+
"
_persona_memory_
"
+
str
(
persona_memory
)
+
"
_persona_attention_
"
+
str
(
persona_attention
)
+
"
_persona_reactivity_
"
+
str
(
persona_reactivity
)
+
"
.jpg
"
plot_game_performance_path
=
"
SIM_game_performance_
"
+
"
epoch_
"
+
str
(
epochs
)
+
"
.jpg
"
plot_agent_assistance_path
=
"
SIM_agent_assistance_
"
+
"
epoch_
"
+
str
(
epochs
)
+
"
.jpg
"
plot_agent_feedback_path
=
"
SIM_agent_feedback_
"
+
"
epoch_
"
+
str
(
epochs
)
+
"
.jpg
"
utils
.
plot2D_game_performance
(
full_path
+
plot_game_performance_path
,
epochs
,
scaling_factor
,
game_performance_per_episode
)
utils
.
plot2D_assistance
(
full_path
+
plot_agent_assistance_path
,
epochs
,
scaling_factor
,
agent_assistance_per_episode
)
...
...
@@ -227,7 +222,7 @@ def main():
#R(s) and pi(s) generated from the first sim
maxent_R_sim
=
maxent
(
world
,
terminals
,
episodes_list
)
maxent_V_sim
,
maxent_P_sim
=
vi
.
value_iteration
(
world
.
p_transition
,
maxent_R_sim
,
gamma
=
0.9
,
error
=
1e-3
,
deterministic
=
Tru
e
)
maxent_V_sim
,
maxent_P_sim
=
vi
.
value_iteration
(
world
.
p_transition
,
maxent_R_sim
,
gamma
=
0.9
,
error
=
1e-3
,
deterministic
=
Fals
e
)
plt
.
figure
(
figsize
=
(
12
,
4
),
num
=
"
maxent_rew
"
)
sns
.
heatmap
(
np
.
reshape
(
maxent_R_sim
,
(
4
,
12
)),
cmap
=
"
Spectral
"
,
annot
=
True
,
cbar
=
False
)
plt
.
savefig
(
full_path
+
"
sim_maxent_R.jpg
"
)
...
...
@@ -240,43 +235,31 @@ def main():
#####################################################################################
#3.WE GOT SOME REAL DATA UPDATE THE BELIEF OF THE BN
log_directory
=
"
/home/pal/carf_ws/src/carf/caregiver_in_the_loop/log/1/0
"
log_directory
=
"
/home/pal/Documents/Framework/bn_generative_model/bn_persona_model/cognitive_game.csv
"
if
os
.
path
.
exists
(
log_directory
):
bn_functions
.
update_episodes_batch
(
bn_model_user_action
,
bn_model_user_react_time
,
bn_model_caregiver_assistance
,
bn_model_caregiver_feedback
,
folder_filename
=
log_directory
,
with_caregiver
=
True
)
bn_model_user_action_from_data
=
Sim
.
build_model_from_data
(
csv_filename
=
log_directory
,
dag_filename
=
bn_model_user_action_filename
,
dag_model
=
bn_model_user_action
)
else
:
assert
(
"
You
'
re not using the user information
"
)
question
=
input
(
"
Are you sure you don
'
t want to load user
'
s belief information?
"
)
game_performance_per_episode
,
react_time_per_episode
,
agent_assistance_per_episode
,
agent_feedback_per_episode
,
episodes_list
=
\
Sim
.
simulation
(
bn_model_user_action
=
bn_model_user_action
,
var_user_action_target_action
=
[
'
user_action
'
],
bn_model_user_react_time
=
bn_model_user_react_time
,
var_user_react_time_target_action
=
[
'
user_react_time
'
],
user_memory_name
=
"
memory
"
,
user_memory_value
=
persona_memory
,
user_attention_name
=
"
attention
"
,
user_attention_value
=
persona_attention
,
user_reactivity_name
=
"
reactivity
"
,
user_reactivity_value
=
persona_reactivity
,
task_progress_name
=
"
game_state
"
,
game_attempt_name
=
"
attempt
"
,
agent_assistance_name
=
"
agent_assistance
"
,
agent_feedback_name
=
"
agent_feedback
"
,
bn_model_agent_assistance
=
bn_model_caregiver_assistance
,
var_agent_assistance_target_action
=
[
"
agent_assistance
"
],
bn_model_agent_feedback
=
bn_model_caregiver_feedback
,
var_agent_feedback_target_action
=
[
"
agent_feedback
"
],
agent_policy
=
None
,
state_space
=
states_space_list
,
action_space
=
action_space_list
,
epochs
=
epochs
,
task_complexity
=
5
,
max_attempt_per_object
=
4
)
plot_game_performance_path
=
"
REAL_SIM_game_performance_
"
+
"
epoch_
"
+
str
(
epochs
)
+
"
_persona_memory_
"
+
str
(
persona_memory
)
+
"
persona_attention_
"
+
str
(
persona_attention
)
+
"
_persona_reactivity_
"
+
str
(
persona_reactivity
)
+
"
.jpg
"
plot_agent_assistance_path
=
"
REAL_SIM_agent_assistance_
"
+
"
epoch_
"
+
str
(
epochs
)
+
"
_persona_memory_
"
+
str
(
persona_memory
)
+
"
_persona_attention_
"
+
str
(
persona_attention
)
+
"
_persona_reactivity_
"
+
str
(
persona_reactivity
)
+
"
.jpg
"
plot_agent_feedback_path
=
"
REAL_SIM_agent_feedback_
"
+
"
epoch_
"
+
str
(
epochs
)
+
"
_persona_memory_
"
+
str
(
persona_memory
)
+
"
_persona_attention_
"
+
str
(
persona_attention
)
+
"
_persona_reactivity_
"
+
str
(
persona_reactivity
)
+
"
.jpg
"
Sim
.
simulation
(
bn_model_user_action
=
bn_model_user_action
,
var_user_action_target_action
=
[
'
user_action
'
],
game_state_bn_name
=
"
game_state
"
,
attempt_bn_name
=
"
attempt
"
,
agent_assistance_bn_name
=
"
agent_assistance
"
,
agent_feedback_bn_name
=
"
agent_feedback
"
,
user_pref_assistance
=
user_pref_assistance
,
agent_behaviour
=
agent_behaviour
,
agent_policy
=
maxent_P_sim
,
state_space
=
states_space_list
,
action_space
=
action_space_list
,
epochs
=
epochs
,
task_complexity
=
5
,
max_attempt_per_object
=
4
,
alpha_learning
=
0.1
)
plot_game_performance_path
=
"
REAL_SIM_game_performance_
"
+
"
epoch_
"
+
str
(
epochs
)
+
"
.jpg
"
plot_agent_assistance_path
=
"
REAL_SIM_agent_assistance_
"
+
"
epoch_
"
+
str
(
epochs
)
+
"
.jpg
"
plot_agent_feedback_path
=
"
REAL_SIM_agent_feedback_
"
+
"
epoch_
"
+
str
(
epochs
)
+
"
.jpg
"
utils
.
plot2D_game_performance
(
full_path
+
plot_game_performance_path
,
epochs
,
scaling_factor
,
game_performance_per_episode
)
utils
.
plot2D_assistance
(
full_path
+
plot_agent_assistance_path
,
epochs
,
scaling_factor
,
agent_assistance_per_episode
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment