diff --git a/include/imu/factor/factor_imu.h b/include/imu/factor/factor_imu.h
index a7ff2d7b063657ec39fff82552fceedf82999847..0d52b68b7a005597b958d90a334a620819f581fe 100644
--- a/include/imu/factor/factor_imu.h
+++ b/include/imu/factor/factor_imu.h
@@ -4,6 +4,7 @@
 //Wolf includes
 #include "imu/feature/feature_imu.h"
 #include "imu/sensor/sensor_imu.h"
+#include "imu/processor/processor_imu.h"
 #include "core/factor/factor_autodiff.h"
 #include "core/math/rotations.h"
 
diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt
index d16b4a3857c88316a48fa5cc79f77a6bc4f7b40d..715b11aa464d8db46a596d80b36e312cc4f51c46 100644
--- a/test/CMakeLists.txt
+++ b/test/CMakeLists.txt
@@ -37,6 +37,12 @@ target_link_libraries(gtest_feature_imu ${PLUGIN_NAME} ${wolf_LIBRARY})
 wolf_add_gtest(gtest_factor_imu2d gtest_factor_imu2d.cpp)
 target_link_libraries(gtest_factor_imu2d ${PLUGIN_NAME} ${wolf_LIBRARY})
 
+wolf_add_gtest(gtest_imu_static_init gtest_imu_static_init.cpp)
+target_link_libraries(gtest_imu_static_init ${PLUGIN_NAME} ${wolf_LIBRARY})
+
+wolf_add_gtest(gtest_imu2d_static_init gtest_imu2d_static_init.cpp)
+target_link_libraries(gtest_imu2d_static_init ${PLUGIN_NAME} ${wolf_LIBRARY})
+
 wolf_add_gtest(gtest_imu_mocap_fusion gtest_imu_mocap_fusion.cpp)
 target_link_libraries(gtest_imu_mocap_fusion ${PLUGIN_NAME} ${wolf_LIBRARY})
 
diff --git a/test/gtest_imu2d_static_init.cpp b/test/gtest_imu2d_static_init.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..b5324fbc9f89b395470479f5249b34ae0d9403ab
--- /dev/null
+++ b/test/gtest_imu2d_static_init.cpp
@@ -0,0 +1,761 @@
+#include <fstream>
+#include <core/ceres_wrapper/solver_ceres.h>
+#include <core/utils/utils_gtest.h>
+#include "imu/internal/config.h"
+
+#include "imu/factor/factor_imu2d.h"
+#include "imu/math/imu2d_tools.h"
+#include "imu/sensor/sensor_imu2d.h"
+#include "core/capture/capture_void.h"
+#include <core/factor/factor_relative_pose_2d.h>
+
+using namespace Eigen;
+using namespace wolf;
+
+class ProcessorImu2dStaticInitTest : public testing::Test
+{
+
+    public: //These can be accessed in fixtures
+        wolf::ProblemPtr problem_ptr_;
+        wolf::SensorBasePtr sensor_ptr_;
+        wolf::ProcessorMotionPtr processor_motion_;
+        wolf::TimeStamp t;
+        wolf::TimeStamp t0;
+        double dt;
+        Vector6d data;
+        Matrix6d data_cov;
+        FrameBasePtr KF0_;
+        FrameBasePtr first_frame_;
+        FrameBasePtr last_frame_;
+        SolverCeresPtr solver_;
+
+    //a new of this will be created for each new test
+    void SetUp() override
+    {
+        WOLF_INFO("Doing setup...");
+        using namespace Eigen;
+        using std::shared_ptr;
+        using std::make_shared;
+        using std::static_pointer_cast;
+        using namespace wolf::Constants;
+
+        std::string wolf_root = _WOLF_IMU_ROOT_DIR;
+
+        // Wolf problem
+        problem_ptr_ = Problem::create("POV", 2);
+        Vector3d extrinsics = (Vector3d() << 0,0,0).finished();
+        sensor_ptr_ = problem_ptr_->installSensor("SensorImu2d", "Main Imu", extrinsics,  wolf_root + "/test/yaml/sensor_imu2d_static_init.yaml");
+        ProcessorBasePtr processor_ptr = problem_ptr_->installProcessor("ProcessorImu2d", "Imu pre-integrator", "Main Imu", wolf_root + "/test/yaml/imu2d_static_init.yaml");
+        processor_motion_ = std::static_pointer_cast<ProcessorMotion>(processor_ptr);
+
+        // Time and data variables
+        dt = 0.1;
+        t0.set(0);
+        t = t0;
+        data = Vector6d::Random();
+        data_cov = Matrix6d::Identity();
+        last_frame_ = nullptr;
+        first_frame_ = nullptr;
+
+        // Create the solver
+        solver_ = make_shared<SolverCeres>(problem_ptr_);
+        
+        // Set the origin
+        VectorComposite x_origin("POV", {Vector2d::Zero(), Vector1d::Zero(), Vector2d::Zero()});
+        VectorComposite std_origin("POV", {0.001*Vector2d::Ones(), 0.001*Vector1d::Ones(), 0.001*Vector2d::Ones()});
+        //KF0_ = problem_ptr_->setPriorFix(x_origin, t0, dt/2);
+        KF0_ = problem_ptr_->setPriorFactor(x_origin, std_origin, 0, 0.01);
+
+    }
+
+    void TestStatic(const Vector3d& body_magnitudes, const Vector3d& bias_groundtruth, const Vector3d& bias_initial_guess, const string& test_name, int testing_var, bool small_tol)
+    {
+      //Data
+      data.head(2) = body_magnitudes.head(2);
+      data(5) = body_magnitudes(2);
+      data.head(2) += bias_groundtruth.head(2);
+      data(5) += bias_groundtruth(2);
+
+      //Set bias initial guess
+      sensor_ptr_->getIntrinsic(t0)->setState(bias_initial_guess);
+      processor_motion_->setOrigin(KF0_);
+
+#if WRITE_CSV_FILE
+      std::fstream file_est; 
+      file_est.open("./est2d-"+test_name+".csv", std::fstream::out);
+      //    std::string header_est = "t,px,py,pz,qx,qy,qz,qw,vx,vy,vz,bax_est,bax_preint\n";
+      std::string header_est;
+      if(testing_var == 0) header_est = "t;px;vx;o;bax_est;bg_est;bax_preint;bg_preint\n";
+      if(testing_var == 1) header_est = "t;py;vy;o;bay_est;bg_est;bay_preint;bg_preint\n";
+      //if(testing_var == 2) header_est = "t;pz;vz;oz:baz_est;bgz_est;baz_preint;bgz_preint\n";
+      if(testing_var == 3) header_est = "t;pnorm;vnorm;o;banorm_est;bg_est;banorm_preint;bg_preint\n";
+      file_est << header_est;
+#endif
+
+
+      int n_frames = 0;
+      for(t = t0; t <= t0 + 9.9 + dt/2; t+=dt){
+        WOLF_INFO("\n------------------------------------------------------------------------");
+
+        //Create and process capture  
+        auto C = std::make_shared<CaptureImu>(t, sensor_ptr_, data, data_cov, KF0_->getCaptureList().front());
+        C->process();
+
+        auto state = problem_ptr_->getState();
+        auto bias_est = sensor_ptr_->getIntrinsic()->getState();
+        auto bias_preint = processor_motion_->getLast()->getCalibrationPreint();
+
+#if WRITE_CSV_FILE
+        // pre-solve print to CSV
+        if(testing_var == 3){
+        file_est << std::fixed << t << ";"
+            << state['P'].norm() << ";"
+            << state['V'].norm() << ";"
+            << state['O'] << ";"
+            << bias_est.head(2).norm() << ";"
+            << bias_est(2) << ";"
+            << bias_preint.head(2).norm() << ";"
+            << bias_preint(2) << "\n";
+        }
+        else
+        {
+        file_est << std::fixed << t << ";"
+            << state['P'](testing_var) << ";"
+            << state['V'](testing_var) << ";"
+            << state['O'] << ";"
+            << bias_est(testing_var) << ";"
+            << bias_est(2) << ";"
+            << bias_preint(testing_var) << ";"
+            << bias_preint(2) << "\n";
+
+        }
+#endif
+
+        // new frame
+        if (last_frame_ != processor_motion_->getOrigin()->getFrame())
+        {
+          n_frames++;
+          last_frame_ = processor_motion_->getOrigin()->getFrame();
+
+          // impose static
+          last_frame_->getP()->setState(KF0_->getP()->getState());
+          last_frame_->getO()->setState(KF0_->getO()->getState());
+          last_frame_->getV()->setZero();
+
+          //Fix frame
+          last_frame_->fix();
+
+          //Solve
+          if(n_frames > 0)
+          {
+            std::string report = solver_->solve(SolverManager::ReportVerbosity::FULL);
+            //WOLF_INFO("Solver Report: ", report);
+
+            state = problem_ptr_->getState();
+            bias_est = sensor_ptr_->getIntrinsic()->getState();
+            bias_preint = processor_motion_->getLast()->getCalibrationPreint();
+            
+            WOLF_INFO("The current problem is:");
+            problem_ptr_->print(4);
+
+#if WRITE_CSV_FILE
+            // post-solve print to CSV with time-stamp shifted by dt/2 to separate from pre-solve  result
+            if(testing_var == 3){
+              file_est << std::fixed << t+dt/2 << ";"
+                << state['P'].norm() << ";"
+                << state['V'].norm() << ";"
+                << state['O'] << ";"
+                << bias_est.head(2).norm() << ";"
+                << bias_est(2) << ";"
+                << bias_preint.head(2).norm() << ";"
+                << bias_preint(2) << "\n";
+            }
+            else
+            {
+              file_est << std::fixed << t+dt/2 << ";"
+                << state['P'](testing_var) << ";"
+                << state['V'](testing_var) << ";"
+                << state['O'] << ";"
+                << bias_est(testing_var) << ";"
+                << bias_est(2) << ";"
+                << bias_preint(testing_var) << ";"
+                << bias_preint(2) << "\n";
+
+            }
+#endif
+          }
+
+        }
+
+
+        WOLF_INFO("Number of frames is ", n_frames);
+        WOLF_INFO("The state is: ", state);
+        WOLF_INFO("The estimated bias is: ", bias_est.transpose());
+        WOLF_INFO("The preintegrated bias is: ", bias_preint.transpose());
+        if(small_tol)
+        {
+          if(n_frames == 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-6);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-6);
+          }
+          else if (n_frames > 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-6);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-6);
+            EXPECT_MATRIX_APPROX(bias_preint, bias_groundtruth, 1e-6);
+          }
+        }
+        else
+        {
+          if(n_frames == 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-3);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-3);
+          }
+          else if (n_frames > 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-3);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-3);
+            EXPECT_MATRIX_APPROX(bias_preint, bias_groundtruth, 1e-3);
+          }
+        }
+      }
+
+#if WRITE_CSV_FILE
+      file_est.close();
+#endif
+
+    }
+
+    void TestStaticZeroOdom(const Vector3d& body_magnitudes, const Vector3d& bias_groundtruth, const Vector3d& bias_initial_guess, const string& test_name, int testing_var, bool small_tol)
+    {
+      //Data
+      data.head(2) = body_magnitudes.head(2);
+      data(5) = body_magnitudes(2);
+      data.head(2) += bias_groundtruth.head(2);
+      data(5) += bias_groundtruth(2);
+
+      //Set bias initial guess
+      sensor_ptr_->getIntrinsic(t0)->setState(bias_initial_guess);
+      processor_motion_->setOrigin(KF0_);
+
+#if WRITE_CSV_FILE
+      std::fstream file_est; 
+      file_est.open("./est2dzeroodom-"+test_name+".csv", std::fstream::out);
+      //    std::string header_est = "t,px,py,pz,qx,qy,qz,qw,vx,vy,vz,bax_est,bax_preint\n";
+      std::string header_est;
+      if(testing_var == 0) header_est = "t;px;vx;o;bax_est;bg_est;bax_preint;bg_preint\n";
+      if(testing_var == 1) header_est = "t;py;vy;o;bay_est;bg_est;bay_preint;bg_preint\n";
+      //if(testing_var == 2) header_est = "t;pz;vz;oz:baz_est;bgz_est;baz_preint;bgz_preint\n";
+      if(testing_var == 3) header_est = "t;pnorm;vnorm;o;banorm_est;bg_est;banorm_preint;bg_preint\n";
+      file_est << header_est;
+#endif
+
+      int n_frames = 0;
+      for(t = t0; t <= t0 + 9.9 + dt/2; t+=dt){
+        WOLF_INFO("\n------------------------------------------------------------------------");
+
+        //Create and process capture  
+        auto C = std::make_shared<CaptureImu>(t, sensor_ptr_, data, data_cov, KF0_->getCaptureList().front());
+        C->process();
+
+        auto state = problem_ptr_->getState();
+        auto bias_est = sensor_ptr_->getIntrinsic()->getState();
+        auto bias_preint = processor_motion_->getLast()->getCalibrationPreint();
+
+#if WRITE_CSV_FILE
+        // pre-solve print to CSV
+        if(testing_var == 3){
+        file_est << std::fixed << t << ";"
+            << state['P'].norm() << ";"
+            << state['V'].norm() << ";"
+            << state['O'] << ";"
+            << bias_est.head(2).norm() << ";"
+            << bias_est(2) << ";"
+            << bias_preint.head(2).norm() << ";"
+            << bias_preint(2) << "\n";
+        }
+        else
+        {
+        file_est << std::fixed << t << ";"
+            << state['P'](testing_var) << ";"
+            << state['V'](testing_var) << ";"
+            << state['O'] << ";"
+            << bias_est(testing_var) << ";"
+            << bias_est(2) << ";"
+            << bias_preint(testing_var) << ";"
+            << bias_preint(2) << "\n";
+
+        }
+#endif
+
+        // new frame
+        if (last_frame_ != processor_motion_->getOrigin()->getFrame())
+        {
+          n_frames++;
+          last_frame_ = processor_motion_->getOrigin()->getFrame();
+          
+          // impose zero odometry
+          processor_motion_->setOdometry(sensor_ptr_->getProblem()->stateZero(processor_motion_->getStateStructure()));
+
+          // add zero displacement and rotation capture & feature & factor with all previous frames
+          assert(sensor_ptr_->getProblem());
+          for (auto frm_pair =  sensor_ptr_->getProblem()->getTrajectory()->begin();
+              frm_pair != sensor_ptr_->getProblem()->getTrajectory()->end();
+              frm_pair++)
+          {
+            if (frm_pair->second == last_frame_)
+              break;
+            auto capture_zero = CaptureBase::emplace<CaptureVoid>(last_frame_, last_frame_->getTimeStamp(), nullptr);
+
+            auto feature_zero = FeatureBase::emplace<FeatureBase>(capture_zero,
+                "FeatureZeroOdom",
+                Vector3d::Zero(),
+                Eigen::MatrixXd::Identity(3,3) * 0.01);
+
+            FactorBase::emplace<FactorRelativePose2d>(feature_zero,
+                feature_zero,
+                frm_pair->second,
+                nullptr,
+                false,
+                TOP_MOTION);
+
+          }
+
+          // impose static
+          last_frame_->getV()->setZero();
+
+          //Fix frame
+          last_frame_->getV()->fix();
+
+          //Solve
+          if(n_frames > 0)
+          {
+            std::string report = solver_->solve(SolverManager::ReportVerbosity::FULL);
+            //WOLF_INFO("Solver Report: ", report);
+
+            state = problem_ptr_->getState();
+            bias_est = sensor_ptr_->getIntrinsic()->getState();
+            bias_preint = processor_motion_->getLast()->getCalibrationPreint();
+            
+            WOLF_INFO("The current problem is:");
+            problem_ptr_->print(4);
+
+#if WRITE_CSV_FILE
+            // post-solve print to CSV with time-stamp shifted by dt/2 to separate from pre-solve  result
+            if(testing_var == 3){
+              file_est << std::fixed << t+dt/2 << ";"
+                << state['P'].norm() << ";"
+                << state['V'].norm() << ";"
+                << state['O'] << ";"
+                << bias_est.head(2).norm() << ";"
+                << bias_est(2) << ";"
+                << bias_preint.head(2).norm() << ";"
+                << bias_preint(2) << "\n";
+            }
+            else
+            {
+              file_est << std::fixed << t+dt/2 << ";"
+                << state['P'](testing_var) << ";"
+                << state['V'](testing_var) << ";"
+                << state['O'] << ";"
+                << bias_est(testing_var) << ";"
+                << bias_est(2) << ";"
+                << bias_preint(testing_var) << ";"
+                << bias_preint(2) << "\n";
+
+            }
+#endif
+          }
+
+        }
+
+
+
+        WOLF_INFO("Number of frames is ", n_frames);
+        WOLF_INFO("The state is: ", state);
+        WOLF_INFO("The estimated bias is: ", bias_est.transpose());
+        WOLF_INFO("The preintegrated bias is: ", bias_preint.transpose());
+        if(small_tol)
+        {
+          if(n_frames == 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-6);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-6);
+          }
+          else if (n_frames > 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-6);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-6);
+            EXPECT_MATRIX_APPROX(bias_preint, bias_groundtruth, 1e-6);
+          }
+        }
+        else
+        {
+          if(n_frames == 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-3);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-3);
+          }
+          else if (n_frames > 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-3);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-3);
+            EXPECT_MATRIX_APPROX(bias_preint, bias_groundtruth, 1e-3);
+          }
+        }
+      }
+
+#if WRITE_CSV_FILE
+      file_est.close();
+#endif
+
+    }
+};
+
+
+
+TEST_F(ProcessorImu2dStaticInitTest, static_bias_aX_initial_guess_zero)
+{
+   Vector3d body_magnitudes = Vector3d::Zero();
+   Vector3d bias_groundtruth = (Vector3d() << 0.42, 0, 0).finished(); 
+   Vector3d bias_initial_guess = Vector3d::Zero();
+
+   TestStatic(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_aX_initial_guess_zero", 0, true); 
+}
+
+TEST_F(ProcessorImu2dStaticInitTest, static_bias_zero_initial_guess_aX)
+{
+   Vector3d body_magnitudes = Vector3d::Zero();
+   Vector3d bias_groundtruth = Vector3d::Zero();
+   Vector3d bias_initial_guess = (Vector3d() << 0.42, 0, 0).finished(); 
+
+   TestStatic(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_zero_initial_guess_aX", 0, true); 
+}
+
+TEST_F(ProcessorImu2dStaticInitTest, static_bias_gX_initial_guess_zero)
+{
+   Vector3d body_magnitudes = Vector3d::Zero();
+   Vector3d bias_groundtruth = (Vector3d() << 0, 0, 0.01).finished(); 
+   Vector3d bias_initial_guess = Vector3d::Zero();
+
+   TestStatic(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_gX_initial_guess_zero", 0, false); 
+}
+
+TEST_F(ProcessorImu2dStaticInitTest, static_bias_zero_initial_guess_gX)
+{
+   Vector3d body_magnitudes = Vector3d::Zero();
+   Vector3d bias_groundtruth = Vector3d::Zero();
+   Vector3d bias_initial_guess = (Vector3d() << 0, 0, 0.01).finished(); 
+
+   TestStatic(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_zero_initial_guess_gX", 0, false); 
+}
+
+TEST_F(ProcessorImu2dStaticInitTest, static_bias_aX_initial_guess_zero_zeroodom)
+{
+   Vector3d body_magnitudes = Vector3d::Zero();
+   Vector3d bias_groundtruth = (Vector3d() << 0.42, 0, 0).finished(); 
+   Vector3d bias_initial_guess = Vector3d::Zero();
+
+   TestStaticZeroOdom(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_aX_initial_guess_zero", 0, true); 
+}
+
+TEST_F(ProcessorImu2dStaticInitTest, static_bias_zero_initial_guess_aX_zeroodom)
+{
+   Vector3d body_magnitudes = Vector3d::Zero();
+   Vector3d bias_groundtruth = Vector3d::Zero();
+   Vector3d bias_initial_guess = (Vector3d() << 0.42, 0, 0).finished(); 
+
+   TestStaticZeroOdom(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_zero_initial_guess_aX", 0, true); 
+}
+
+TEST_F(ProcessorImu2dStaticInitTest, static_bias_gX_initial_guess_zero_zeroodom)
+{
+   Vector3d body_magnitudes = Vector3d::Zero();
+   Vector3d bias_groundtruth = (Vector3d() <<  0, 0, 0.01).finished(); 
+   Vector3d bias_initial_guess = Vector3d::Zero();
+
+   TestStaticZeroOdom(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_gX_initial_guess_zero", 0, false); 
+}
+
+TEST_F(ProcessorImu2dStaticInitTest, static_bias_zero_initial_guess_gX_zeroodom)
+{
+   Vector3d body_magnitudes = Vector3d::Zero();
+   Vector3d bias_groundtruth = Vector3d::Zero();
+   Vector3d bias_initial_guess = (Vector3d() << 0, 0, 0.01).finished(); 
+
+   TestStaticZeroOdom(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_zero_initial_guess_gX", 0, false); 
+}
+
+
+TEST_F(ProcessorImu2dStaticInitTest, static_bias_zero_initial_guess_a_random)
+{
+   Vector3d body_magnitudes = Vector3d::Zero();
+   Vector3d bias_groundtruth = Vector3d::Zero();
+   Vector3d bias_initial_guess = Vector3d::Random()*100;
+   bias_initial_guess(2) = 0;
+
+   TestStatic(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_zero_initial_guess_a_random", 3, true); 
+}
+
+TEST_F(ProcessorImu2dStaticInitTest, static_bias_zero_initial_guess_random)
+{
+   Vector3d body_magnitudes = Vector3d::Zero();
+   Vector3d bias_groundtruth = Vector3d::Zero();
+   Vector3d bias_initial_guess = Vector3d::Random()*0.01;
+
+   TestStatic(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_zero_initial_guess_random", 3, false); 
+}
+//class ProcessorImu2dStaticInitTest : public testing::Test
+//{
+//
+//    public: //These can be accessed in fixtures
+//        wolf::ProblemPtr _problem_ptr;
+//        wolf::SensorBasePtr _sensor_ptr;
+//        wolf::ProcessorMotionPtr _processor_motion;
+//        wolf::TimeStamp t;
+//        wolf::TimeStamp t0;
+//        double mti_clock, tmp;
+//        double dt;
+//        bool second_frame;
+//        bool third_frame;
+//        Vector6d data;
+//        Matrix6d data_cov;
+//        VectorComposite     x0c;                                // initial state composite
+//        VectorComposite     s0c;                                // initial sigmas composite
+//        std::shared_ptr<wolf::CaptureImu> C;
+//        FrameBasePtr _first_frame;
+//        FrameBasePtr _last_frame;
+//        SolverCeresPtr _solver;
+//
+//    //a new of this will be created for each new test
+//    void SetUp() override
+//    {
+//        using namespace Eigen;
+//        using std::shared_ptr;
+//        using std::make_shared;
+//        using std::static_pointer_cast;
+//        using namespace wolf::Constants;
+//
+//        std::string wolf_root = _WOLF_IMU_ROOT_DIR;
+//
+//        // Wolf problem
+//        _problem_ptr = Problem::create("POV", 2);
+//        Vector3d extrinsics = (Vector3d() << 0,0, 0).finished();
+//        _sensor_ptr = _problem_ptr->installSensor("SensorImu2d", "Main Imu", extrinsics,  wolf_root + "/demos/sensor_imu2d.yaml");
+//        ProcessorBasePtr processor_ptr = _problem_ptr->installProcessor("ProcessorImu2d", "Imu pre-integrator", "Main Imu", wolf_root + "/demos/imu2d_static_init.yaml");
+//        _processor_motion = std::static_pointer_cast<ProcessorMotion>(processor_ptr);
+//
+//        // Time and data variables
+//        second_frame = false;
+//        third_frame = false;
+//        dt = 0.01;
+//        t0.set(0);
+//        t = t0;
+//        data = Vector6d::Random();
+//        data_cov = Matrix6d::Identity();
+//        _last_frame = nullptr;
+//
+//        // Create one capture to store the Imu data arriving from (sensor / callback / file / etc.)
+//        C = make_shared<CaptureImu>(t, _sensor_ptr, data, data_cov, Vector3d::Zero());
+//
+//        // Create the solver
+//        _solver = make_shared<SolverCeres>(_problem_ptr);
+//    }
+//
+//};
+//
+//
+///**
+// *  SET TO TRUE  TO PRODUCE CSV FILE
+// *  SET TO FALSE TO STOP PRODUCING CSV FILE
+// */
+//#define WRITE_CSV_FILE  true
+//
+//TEST_F(ProcessorImu2dStaticInitTest, static)
+//{
+//   // Set the origin
+//   x0c['P'] = Vector2d(0, 0);
+//   x0c['O'] = Vector1d(0);
+//   x0c['V'] = Vector2d(0, 0);
+//
+//   data_cov *= 1e-3;
+//   data << 1, 2, 3, 4, 5, 6;
+//   Vector3d bias_groundtruth;
+//   bias_groundtruth << data(0), data(1), data(5);
+//   //dt = 0.0001;
+//   auto KF0 = _problem_ptr->setPriorFix(x0c, t0, dt/2);
+//   KF0->fix();
+//   _processor_motion->setOrigin(KF0);
+//
+//   WOLF_INFO("Data is: \n", data);
+//   int size = 3;
+//   second_frame = false;
+//   _first_frame = nullptr;
+//
+//   #if WRITE_CSV_FILE
+//    std::fstream file_est; 
+//    file_est.open("./est.csv", std::fstream::out);
+//    //    std::string header_est = "t,px,py,pz,qx,qy,qz,qw,vx,vy,vz,bax_est,bax_preint\n";
+//    std::string header_est = "t;px;vx;bax_est;bax_preint\n";
+//    file_est << header_est;
+//   #endif
+//
+//
+//   int i = 1;
+//   int n_frames = 0;
+//   for(t = t0+dt; t <= t0 + 3.1 + dt/2; t+=dt){
+//       WOLF_INFO("Starting iteration ", i, " with timestamp ", t);
+//       ++i;
+//       C = std::make_shared<CaptureImu>(t, _sensor_ptr, data, data_cov, Vector3d::Zero());
+//       WOLF_INFO("Created new Capture");
+//       if(second_frame){      
+//         //ASSERT_MATRIX_APPROX(_processor_motion->getState().vector("POV"), Vector5d::Zero(), 1e-9);
+//       }
+//       WOLF_INFO("Processing capture");
+//       C->process();
+//       WOLF_INFO("Doing the static initialization stuff");
+//       if (not _last_frame)
+//       {
+//         n_frames++;
+//         _last_frame = _processor_motion->getOrigin()->getFrame();
+//         _first_frame = _last_frame;
+//         
+//         // fix Position and orientation
+//         _last_frame->getP()->fix();
+//         _last_frame->getO()->fix();
+//
+//         // impose zero velocity
+//         _last_frame->getV()->setZero();
+//         _last_frame->getV()->fix();
+//
+//         // impose zero odometry
+//         _processor_motion->setOdometry(_sensor_ptr->getProblem()->stateZero(_processor_motion->getStateStructure()));
+//       }
+//       else
+//       {
+//         assert(_processor_motion->getOrigin() && "SubscriberImuEnableable::callback: nullptr origin");
+//         assert(_processor_motion->getOrigin()->getFrame() && "SubscriberImuEnableable::callback: nullptr origin frame");
+//
+//         // new frame
+//         if (_last_frame != _processor_motion->getOrigin()->getFrame())
+//         {
+//             n_frames++;
+//             second_frame = true;
+//             _last_frame = _processor_motion->getOrigin()->getFrame();
+//             
+//             // fix Position and orientation
+//             _last_frame->getP()->fix();
+//             _last_frame->getO()->fix();
+//
+//             // impose zero velocity
+//             _last_frame->getV()->setZero();
+//             _last_frame->getV()->fix();
+//
+//             // impose zero odometry
+//             _processor_motion->setOdometry(_sensor_ptr->getProblem()->stateZero(_processor_motion->getStateStructure()));
+//
+//             // add zero displacement and rotation capture & feature & factor with all previous frames
+//             assert(_sensor_ptr->getProblem());
+//             Eigen::VectorXd zero_motion = Eigen::VectorXd::Zero(size);
+//             for (auto frm_pair =  _sensor_ptr->getProblem()->getTrajectory()->begin();
+//                 frm_pair != _sensor_ptr->getProblem()->getTrajectory()->end();
+//                 frm_pair++)
+//             {
+//               if (frm_pair->second == _last_frame)
+//                 break;
+//               auto capture_zero = CaptureBase::emplace<CaptureVoid>(_last_frame, _last_frame->getTimeStamp(), nullptr);
+//               auto feature_zero = FeatureBase::emplace<FeatureBase>(capture_zero,
+//                                                                     "FeatureZeroOdom",
+//                                                                     zero_motion,
+//                                                                     Eigen::MatrixXd::Identity(size,size) * 0.01);
+//
+//               FactorBase::emplace<FactorRelativePose2d>(feature_zero,
+//                                                         feature_zero,
+//                                                         frm_pair->second,
+//                                                         nullptr,
+//                                                         false,
+//                                                         TOP_MOTION);
+//
+//             }
+//           }
+//       }
+//       WOLF_INFO("Static initialization done");
+//       if(_first_frame)
+//       {
+//         //WOLF_INFO("0 - The first frame is ", _first_frame->id(), " and it's currently estimated bias is: \n", _first_frame->getCaptureOf(_sensor_ptr)->getStateBlock('I')->getState());
+//         //WOLF_INFO("its state vector is: \n", _first_frame->getStateVector());
+//         //WOLF_INFO_COND(second_frame, "The second frame has been created");
+//         //WOLF_INFO("1 - The last (current) frame is: ", _last_frame->id(), " and it's state vector is: \n", _last_frame->getStateVector());
+//         //WOLF_INFO("2 - The current frame's estimated bias is: \n", _last_frame->getCaptureOf(_sensor_ptr)->getStateBlock('I')->getState());
+//         //WOLF_INFO("3 - The current state is (from _processor_motion): \n", _processor_motion->getState().vector("POV"));
+//       }
+//       //WOLF_INFO("The current problem is:");
+//       //_problem_ptr->print(4);
+//       auto state = _problem_ptr->getState();
+//       auto bias_est = _sensor_ptr->getIntrinsic()->getState();
+//       auto bias_preint = _processor_motion->getLast()->getCalibrationPreint();
+//
+//       #if WRITE_CSV_FILE
+//        // pre-solve print to CSV
+//        file_est << std::fixed << t << ";"
+//            << state['P'](0) << ";"
+//            << state['V'](0) << ";"
+//            << bias_est(0) << ";"
+//            << bias_preint(0) << "\n";
+//      #endif
+//
+//      if(_problem_ptr->getTrajectory()->getFrameMap().size() > n_frames)
+//      {
+//         WOLF_INFO("Solving...");
+//         std::string report = _solver->solve(SolverManager::ReportVerbosity::BRIEF);
+//
+//         state = _problem_ptr->getState();
+//         bias_est = _sensor_ptr->getIntrinsic()->getState();
+//         bias_preint = _processor_motion->getLast()->getCalibrationPreint();
+//
+//          #if WRITE_CSV_FILE
+//              // post-solve print to CSV with time-stamp shifted by dt/2 to separate from pre-solve  result
+//              file_est << std::fixed << t+dt/2 << ";"
+//                  << state['P'](0) << ";"
+//                  << state['V'](0) << ";"
+//                  << bias_est(0) << ";"
+//                  << bias_preint(0) << "\n";
+//          #endif
+//
+//
+//         WOLF_INFO("Solved");
+//         if(_first_frame)
+//         {
+//           //WOLF_INFO("4 - The first frame is ", _first_frame->id(), " and it's currently estimated bias is: \n", _first_frame->getCaptureOf(_sensor_ptr)->getStateBlock('I')->getState());
+//           //WOLF_INFO("its state vector is: \n", _first_frame->getStateVector());
+//           //WOLF_INFO_COND(second_frame, "The second frame has been created");
+//           //WOLF_INFO("5 - The last (current) frame is: ", _last_frame->id(), " and it's state vector is: \n", _last_frame->getStateVector());
+//           //WOLF_INFO("6 - The current frame's estimated bias is: \n", _last_frame->getCaptureOf(_sensor_ptr)->getStateBlock('I')->getState());
+//           //WOLF_INFO("7 - The current state is (from _processor_motion): \n", _processor_motion->getState().vector("POV"));
+//           WOLF_INFO("Current frame is", _processor_motion->getLast()->id());
+//           WOLF_INFO("The state is \n:", state);
+//           WOLF_INFO("The estimated bias is: \n", bias_est);
+//           WOLF_INFO("The preintegrated bias is: \n", bias_preint);
+//         }
+//         if(n_frames > 1)
+//         {
+//           ASSERT_MATRIX_APPROX(state.vector("POV"), KF0->getState().vector("POV"), 1e-9);
+//           ASSERT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-9);
+//         }
+//         if (n_frames > 2)
+//         {
+//           ASSERT_MATRIX_APPROX(bias_preint, bias_groundtruth, 1e-9);
+//         }
+//         WOLF_INFO("------------------------------------------------------------------------\n");
+//      }
+//   }
+//}
+//
+int main(int argc, char **argv)
+{
+    testing::InitGoogleTest(&argc, argv);
+    //    ::testing::GTEST_FLAG(filter) = "FactorImu2d.no_bias_fixed"; // Test only this one
+    return RUN_ALL_TESTS();
+}
diff --git a/test/gtest_imu_static_init.cpp b/test/gtest_imu_static_init.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..9c2bdbe07c0f8fef4c302d6ad47ab3d5ad13b523
--- /dev/null
+++ b/test/gtest_imu_static_init.cpp
@@ -0,0 +1,673 @@
+#include <fstream>
+
+#include <core/ceres_wrapper/solver_ceres.h>
+#include <core/utils/utils_gtest.h>
+#include "imu/internal/config.h"
+
+#include "imu/factor/factor_imu.h"
+#include "imu/math/imu_tools.h"
+#include "imu/sensor/sensor_imu.h"
+#include "core/capture/capture_void.h"
+#include <core/factor/factor_relative_pose_3d.h>
+
+using namespace Eigen;
+using namespace wolf;
+
+/**
+ *  SET TO TRUE  TO PRODUCE CSV FILE
+ *  SET TO FALSE TO STOP PRODUCING CSV FILE
+ */
+#define WRITE_CSV_FILE  true
+
+class ProcessorImuStaticInitTest : public testing::Test
+{
+
+    public: //These can be accessed in fixtures
+        wolf::ProblemPtr problem_ptr_;
+        wolf::SensorBasePtr sensor_ptr_;
+        wolf::ProcessorMotionPtr processor_motion_;
+        wolf::TimeStamp t;
+        wolf::TimeStamp t0;
+        double dt;
+        Vector6d data;
+        Matrix6d data_cov;
+        FrameBasePtr KF0_;
+        FrameBasePtr first_frame_;
+        FrameBasePtr last_frame_;
+        SolverCeresPtr solver_;
+
+    //a new of this will be created for each new test
+    void SetUp() override
+    {
+        WOLF_INFO("Doing setup...");
+        using namespace Eigen;
+        using std::shared_ptr;
+        using std::make_shared;
+        using std::static_pointer_cast;
+        using namespace wolf::Constants;
+
+        std::string wolf_root = _WOLF_IMU_ROOT_DIR;
+
+        // Wolf problem
+        problem_ptr_ = Problem::create("POV", 3);
+        Vector7d extrinsics = (Vector7d() << 0,0,0,0,0,0,1).finished();
+        sensor_ptr_ = problem_ptr_->installSensor("SensorImu", "Main Imu", extrinsics,  wolf_root + "/test/yaml/sensor_imu_static_init.yaml");
+        ProcessorBasePtr processor_ptr = problem_ptr_->installProcessor("ProcessorImu", "Imu pre-integrator", "Main Imu", wolf_root + "/test/yaml/imu_static_init.yaml");
+        processor_motion_ = std::static_pointer_cast<ProcessorMotion>(processor_ptr);
+
+        // Time and data variables
+        dt = 0.1;
+        t0.set(0);
+        t = t0;
+        data = Vector6d::Random();
+        data_cov = Matrix6d::Identity();
+        last_frame_ = nullptr;
+        first_frame_ = nullptr;
+
+        // Create the solver
+        solver_ = make_shared<SolverCeres>(problem_ptr_);
+        
+        // Set the origin
+        VectorComposite x0c("POV", {Vector3d::Zero(), (Vector4d() << 0,0,0,1).finished(), Vector3d::Zero()});
+        WOLF_INFO("x0c is: \n", x0c);
+        //KF0_ = problem_ptr_->setPriorFix(x0c, t0, dt/2);
+
+        Vector4d q_init; q_init << 0,0,0,1;
+        VectorComposite x_origin("POV", {Vector3d::Zero(), q_init, Vector3d::Zero()});
+        VectorComposite std_origin("POV", {0.001*Vector3d::Ones(), 0.001*Vector3d::Ones(), 0.001*Vector3d::Ones()});
+        KF0_ = problem_ptr_->setPriorFactor(x_origin, std_origin, 0, 0.01);
+
+    }
+
+    void TestStatic(const Vector6d& body_magnitudes, const Vector6d& bias_groundtruth, const Vector6d& bias_initial_guess, const string& test_name, int testing_var, bool small_tol)
+    {
+      //Data
+      data = body_magnitudes;
+      data.head(3) -= Quaterniond(Vector4d(KF0_->getO()->getState())).conjugate() * wolf::gravity();
+      data += bias_groundtruth;
+
+      //Set bias initial guess
+      sensor_ptr_->getIntrinsic(t0)->setState(bias_initial_guess);
+      processor_motion_->setOrigin(KF0_);
+
+#if WRITE_CSV_FILE
+      std::fstream file_est; 
+      file_est.open("./est-"+test_name+".csv", std::fstream::out);
+      //    std::string header_est = "t,px,py,pz,qx,qy,qz,qw,vx,vy,vz,bax_est,bax_preint\n";
+      std::string header_est;
+      if(testing_var == 0) header_est = "t;px;vx;ox;bax_est;bgx_est;bax_preint;bgx_preint\n";
+      if(testing_var == 1) header_est = "t;py;vy;oy;bay_est;bgy_est;bay_preint;bgy_preint\n";
+      if(testing_var == 2) header_est = "t;pz;vz;oz:baz_est;bgz_est;baz_preint;bgz_preint\n";
+      if(testing_var == 3) header_est = "t;pnorm;vnorm;onorm;banorm_est;bgnorm_est;banorm_preint;bgnorm_preint\n";
+      file_est << header_est;
+#endif
+
+
+      int n_frames = 0;
+      for(t = t0; t <= t0 + 9.9 + dt/2; t+=dt){
+        WOLF_INFO("\n------------------------------------------------------------------------");
+
+        //Create and process capture  
+        auto C = std::make_shared<CaptureImu>(t, sensor_ptr_, data, data_cov, KF0_->getCaptureList().front());
+        C->process();
+
+        auto state = problem_ptr_->getState();
+        auto bias_est = sensor_ptr_->getIntrinsic()->getState();
+        auto bias_preint = processor_motion_->getLast()->getCalibrationPreint();
+
+#if WRITE_CSV_FILE
+        // pre-solve print to CSV
+        if(testing_var == 3){
+        file_est << std::fixed << t << ";"
+            << state['P'].norm() << ";"
+            << state['V'].norm() << ";"
+            << state['O'].norm() << ";"
+            << bias_est.head(3).norm() << ";"
+            << bias_est.tail(3).norm() << ";"
+            << bias_preint.head(3).norm() << ";"
+            << bias_preint.tail(3).norm() << "\n";
+        }
+        else
+        {
+        file_est << std::fixed << t << ";"
+            << state['P'](testing_var) << ";"
+            << state['V'](testing_var) << ";"
+            << state['O'](testing_var) << ";"
+            << bias_est(testing_var) << ";"
+            << bias_est(testing_var+3) << ";"
+            << bias_preint(testing_var) << ";"
+            << bias_preint(testing_var+3) << "\n";
+
+        }
+#endif
+
+        // new frame
+        if (last_frame_ != processor_motion_->getOrigin()->getFrame())
+        {
+          n_frames++;
+          last_frame_ = processor_motion_->getOrigin()->getFrame();
+
+          // impose static
+          last_frame_->getP()->setState(KF0_->getP()->getState());
+          last_frame_->getO()->setState(KF0_->getO()->getState());
+          last_frame_->getV()->setZero();
+
+          //Fix frame
+          last_frame_->fix();
+
+          //Solve
+          if(n_frames > 0)
+          {
+            std::string report = solver_->solve(SolverManager::ReportVerbosity::FULL);
+            //WOLF_INFO("Solver Report: ", report);
+
+            state = problem_ptr_->getState();
+            bias_est = sensor_ptr_->getIntrinsic()->getState();
+            bias_preint = processor_motion_->getLast()->getCalibrationPreint();
+            
+            WOLF_INFO("The current problem is:");
+            problem_ptr_->print(4);
+
+#if WRITE_CSV_FILE
+            // post-solve print to CSV with time-stamp shifted by dt/2 to separate from pre-solve  result
+            if(testing_var == 3){
+              file_est << std::fixed << t+dt/2 << ";"
+                << state['P'].norm() << ";"
+                << state['V'].norm() << ";"
+                << state['O'].norm() << ";"
+                << bias_est.head(3).norm() << ";"
+                << bias_est.tail(3).norm() << ";"
+                << bias_preint.head(3).norm() << ";"
+                << bias_preint.tail(3).norm() << "\n";
+            }
+            else
+            {
+              file_est << std::fixed << t+dt/2 << ";"
+                << state['P'](testing_var) << ";"
+                << state['V'](testing_var) << ";"
+                << state['O'](testing_var) << ";"
+                << bias_est(testing_var) << ";"
+                << bias_est(testing_var+3) << ";"
+                << bias_preint(testing_var) << ";"
+                << bias_preint(testing_var+3) << "\n";
+
+            }
+#endif
+          }
+
+        }
+
+
+
+        WOLF_INFO("Number of frames is ", n_frames);
+        WOLF_INFO("The state is: ", state);
+        WOLF_INFO("The estimated bias is: ", bias_est.transpose());
+        WOLF_INFO("The preintegrated bias is: ", bias_preint.transpose());
+        if(small_tol)
+        {
+          if(n_frames == 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-6);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-6);
+          }
+          else if (n_frames > 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-6);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-6);
+            EXPECT_MATRIX_APPROX(bias_preint, bias_groundtruth, 1e-6);
+          }
+        }
+        else
+        {
+          if(n_frames == 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-3);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-3);
+          }
+          else if (n_frames > 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-3);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-3);
+            EXPECT_MATRIX_APPROX(bias_preint, bias_groundtruth, 1e-3);
+          }
+        }
+      }
+
+#if WRITE_CSV_FILE
+      file_est.close();
+#endif
+
+    }
+
+    void TestStaticZeroOdom(const Vector6d& body_magnitudes, const Vector6d& bias_groundtruth, const Vector6d& bias_initial_guess, const string& test_name, int testing_var, bool small_tol)
+    {
+      //Data
+      data = body_magnitudes;
+      data.head(3) -= Quaterniond(Vector4d(KF0_->getO()->getState())).conjugate() * wolf::gravity();
+      data += bias_groundtruth;
+
+      //Set bias initial guess
+      sensor_ptr_->getIntrinsic(t0)->setState(bias_initial_guess);
+      processor_motion_->setOrigin(KF0_);
+
+#if WRITE_CSV_FILE
+      std::fstream file_est; 
+      file_est.open("./estzeroodom-"+test_name+".csv", std::fstream::out);
+      //    std::string header_est = "t,px,py,pz,qx,qy,qz,qw,vx,vy,vz,bax_est,bax_preint\n";
+      std::string header_est;
+      if(testing_var == 0) header_est = "t;px;vx;ox;bax_est;bgx_est;bax_preint;bgx_preint\n";
+      if(testing_var == 1) header_est = "t;py;vy;oy;bay_est;bgy_est;bay_preint;bgy_preint\n";
+      if(testing_var == 2) header_est = "t;pz;vz;oz:baz_est;bgz_est;baz_preint;bgz_preint\n";
+      if(testing_var == 3) header_est = "t;pnorm;vnorm;onorm;banorm_est;bgnorm_est;banorm_preint;bgnorm_preint\n";
+      file_est << header_est;
+#endif
+
+
+      int n_frames = 0;
+      for(t = t0; t <= t0 + 9.9 + dt/2; t+=dt){
+        WOLF_INFO("\n------------------------------------------------------------------------");
+
+        //Create and process capture  
+        auto C = std::make_shared<CaptureImu>(t, sensor_ptr_, data, data_cov, KF0_->getCaptureList().front());
+        C->process();
+
+        auto state = problem_ptr_->getState();
+        auto bias_est = sensor_ptr_->getIntrinsic()->getState();
+        auto bias_preint = processor_motion_->getLast()->getCalibrationPreint();
+
+#if WRITE_CSV_FILE
+        // pre-solve print to CSV
+        if(testing_var == 3){
+        file_est << std::fixed << t << ";"
+            << state['P'].norm() << ";"
+            << state['V'].norm() << ";"
+            << state['O'].norm() << ";"
+            << bias_est.head(3).norm() << ";"
+            << bias_est.tail(3).norm() << ";"
+            << bias_preint.head(3).norm() << ";"
+            << bias_preint.tail(3).norm() << "\n";
+        }
+        else
+        {
+        file_est << std::fixed << t << ";"
+            << state['P'](testing_var) << ";"
+            << state['V'](testing_var) << ";"
+            << state['O'](testing_var) << ";"
+            << bias_est(testing_var) << ";"
+            << bias_est(testing_var+3) << ";"
+            << bias_preint(testing_var) << ";"
+            << bias_preint(testing_var+3) << "\n";
+
+        }
+#endif
+
+        // new frame
+        if (last_frame_ != processor_motion_->getOrigin()->getFrame())
+        {
+          n_frames++;
+          last_frame_ = processor_motion_->getOrigin()->getFrame();
+          
+          // impose zero odometry
+          processor_motion_->setOdometry(sensor_ptr_->getProblem()->stateZero(processor_motion_->getStateStructure()));
+
+          // add zero displacement and rotation capture & feature & factor with all previous frames
+          assert(sensor_ptr_->getProblem());
+          for (auto frm_pair =  sensor_ptr_->getProblem()->getTrajectory()->begin();
+              frm_pair != sensor_ptr_->getProblem()->getTrajectory()->end();
+              frm_pair++)
+          {
+            if (frm_pair->second == last_frame_)
+              break;
+            auto capture_zero = CaptureBase::emplace<CaptureVoid>(last_frame_, last_frame_->getTimeStamp(), nullptr);
+
+            auto feature_zero = FeatureBase::emplace<FeatureBase>(capture_zero,
+                "FeatureZeroOdom",
+                Vector7d::Zero(),
+                Eigen::MatrixXd::Identity(6,6) * 0.01);
+
+            FactorBase::emplace<FactorRelativePose3d>(feature_zero,
+                feature_zero,
+                frm_pair->second,
+                nullptr,
+                false,
+                TOP_MOTION);
+
+          }
+
+          // impose static
+          last_frame_->getV()->setZero();
+
+          //Fix frame
+          last_frame_->getV()->fix();
+
+          //Solve
+          if(n_frames > 0)
+          {
+            std::string report = solver_->solve(SolverManager::ReportVerbosity::FULL);
+            //WOLF_INFO("Solver Report: ", report);
+
+            state = problem_ptr_->getState();
+            bias_est = sensor_ptr_->getIntrinsic()->getState();
+            bias_preint = processor_motion_->getLast()->getCalibrationPreint();
+            
+            WOLF_INFO("The current problem is:");
+            problem_ptr_->print(4);
+
+#if WRITE_CSV_FILE
+            // post-solve print to CSV with time-stamp shifted by dt/2 to separate from pre-solve  result
+            if(testing_var == 3){
+              file_est << std::fixed << t+dt/2 << ";"
+                << state['P'].norm() << ";"
+                << state['V'].norm() << ";"
+                << state['O'].norm() << ";"
+                << bias_est.head(3).norm() << ";"
+                << bias_est.tail(3).norm() << ";"
+                << bias_preint.head(3).norm() << ";"
+                << bias_preint.tail(3).norm() << "\n";
+            }
+            else
+            {
+              file_est << std::fixed << t+dt/2 << ";"
+                << state['P'](testing_var) << ";"
+                << state['V'](testing_var) << ";"
+                << state['O'](testing_var) << ";"
+                << bias_est(testing_var) << ";"
+                << bias_est(testing_var+3) << ";"
+                << bias_preint(testing_var) << ";"
+                << bias_preint(testing_var+3) << "\n";
+
+            }
+#endif
+          }
+
+        }
+
+
+
+        WOLF_INFO("Number of frames is ", n_frames);
+        WOLF_INFO("The state is: ", state);
+        WOLF_INFO("The estimated bias is: ", bias_est.transpose());
+        WOLF_INFO("The preintegrated bias is: ", bias_preint.transpose());
+        if(small_tol)
+        {
+          if(n_frames == 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-6);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-6);
+          }
+          else if (n_frames > 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-6);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-6);
+            EXPECT_MATRIX_APPROX(bias_preint, bias_groundtruth, 1e-6);
+          }
+        }
+        else
+        {
+          if(n_frames == 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-3);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-3);
+          }
+          else if (n_frames > 2)
+          {
+            EXPECT_MATRIX_APPROX(state.vector("POV"), KF0_->getState().vector("POV"), 1e-3);
+            EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-3);
+            EXPECT_MATRIX_APPROX(bias_preint, bias_groundtruth, 1e-3);
+          }
+        }
+      }
+
+#if WRITE_CSV_FILE
+      file_est.close();
+#endif
+
+    }
+};
+
+
+
+TEST_F(ProcessorImuStaticInitTest, static_bias_aX_initial_guess_zero)
+{
+   Vector6d body_magnitudes = Vector6d::Zero();
+   Vector6d bias_groundtruth = (Vector6d() << 0.42, 0, 0, 0, 0, 0).finished(); 
+   Vector6d bias_initial_guess = Vector6d::Zero();
+
+   TestStatic(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_aX_initial_guess_zero", 0, true); 
+}
+
+TEST_F(ProcessorImuStaticInitTest, static_bias_zero_initial_guess_aX)
+{
+   Vector6d body_magnitudes = Vector6d::Zero();
+   Vector6d bias_groundtruth = Vector6d::Zero();
+   Vector6d bias_initial_guess = (Vector6d() << 0.42, 0, 0, 0, 0, 0).finished(); 
+
+   TestStatic(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_zero_initial_guess_aX", 0, true); 
+}
+
+TEST_F(ProcessorImuStaticInitTest, static_bias_gX_initial_guess_zero)
+{
+   Vector6d body_magnitudes = Vector6d::Zero();
+   Vector6d bias_groundtruth = (Vector6d() << 0, 0, 0, 0.01, 0, 0).finished(); 
+   Vector6d bias_initial_guess = Vector6d::Zero();
+
+   TestStatic(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_gX_initial_guess_zero", 0, false); 
+}
+
+TEST_F(ProcessorImuStaticInitTest, static_bias_zero_initial_guess_gX)
+{
+   Vector6d body_magnitudes = Vector6d::Zero();
+   Vector6d bias_groundtruth = Vector6d::Zero();
+   Vector6d bias_initial_guess = (Vector6d() << 0, 0, 0, 0.01, 0, 0).finished(); 
+
+   TestStatic(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_zero_initial_guess_gX", 0, false); 
+}
+
+TEST_F(ProcessorImuStaticInitTest, static_bias_aX_initial_guess_zero_zeroodom)
+{
+   Vector6d body_magnitudes = Vector6d::Zero();
+   Vector6d bias_groundtruth = (Vector6d() << 0.42, 0, 0, 0, 0, 0).finished(); 
+   Vector6d bias_initial_guess = Vector6d::Zero();
+
+   TestStaticZeroOdom(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_aX_initial_guess_zero", 0, true); 
+}
+
+TEST_F(ProcessorImuStaticInitTest, static_bias_zero_initial_guess_aX_zeroodom)
+{
+   Vector6d body_magnitudes = Vector6d::Zero();
+   Vector6d bias_groundtruth = Vector6d::Zero();
+   Vector6d bias_initial_guess = (Vector6d() << 0.42, 0, 0, 0, 0, 0).finished(); 
+
+   TestStaticZeroOdom(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_zero_initial_guess_aX", 0, true); 
+}
+
+TEST_F(ProcessorImuStaticInitTest, static_bias_gX_initial_guess_zero_zeroodom)
+{
+   Vector6d body_magnitudes = Vector6d::Zero();
+   Vector6d bias_groundtruth = (Vector6d() << 0, 0, 0, 0.01, 0, 0).finished(); 
+   Vector6d bias_initial_guess = Vector6d::Zero();
+
+   TestStaticZeroOdom(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_gX_initial_guess_zero", 0, false); 
+}
+
+TEST_F(ProcessorImuStaticInitTest, static_bias_zero_initial_guess_gX_zeroodom)
+{
+   Vector6d body_magnitudes = Vector6d::Zero();
+   Vector6d bias_groundtruth = Vector6d::Zero();
+   Vector6d bias_initial_guess = (Vector6d() << 0, 0, 0, 0.01, 0, 0).finished(); 
+
+   TestStaticZeroOdom(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_zero_initial_guess_gX", 0, false); 
+}
+
+
+TEST_F(ProcessorImuStaticInitTest, static_bias_zero_initial_guess_a_random)
+{
+   Vector6d body_magnitudes = Vector6d::Zero();
+   Vector6d bias_groundtruth = Vector6d::Zero();
+   Vector6d bias_initial_guess = Vector6d::Random()*100;
+   bias_initial_guess.tail(3) = Vector3d::Zero();
+
+   TestStatic(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_zero_initial_guess_a_random", 3, true); 
+}
+
+TEST_F(ProcessorImuStaticInitTest, static_bias_zero_initial_guess_random)
+{
+   Vector6d body_magnitudes = Vector6d::Zero();
+   Vector6d bias_groundtruth = Vector6d::Zero();
+   Vector6d bias_initial_guess = Vector6d::Random()*0.01;
+
+   TestStatic(body_magnitudes, bias_groundtruth, bias_initial_guess, "static_bias_zero_initial_guess_random", 3, false); 
+}
+
+//TEST_F(ProcessorImuStaticInitTest, static)
+//{
+//   WOLF_INFO("Starting Test");
+//
+//   data_cov *= 1e-3;
+//   data << 1, 2, 3, 4, 5, 6;
+//   data *= 0.01;
+//   data.head(3) -= wolf::gravity();
+//   sensor_ptr_->getIntrinsic(t0)->setState(data);
+//   data << -wolf::gravity(), 0,0,0;
+//   //Vector6d bias_groundtruth = data;
+//   //TODO: Fix this, it works because initial position and extrinsics are 0, but gravity has to be preceded by the quaternion that takes it to the IMU reference
+//   //WOLF_INFO("The Bias ground_truth is: \n", bias_groundtruth);
+//
+//   //dt = 0.3;
+//
+//   WOLF_INFO("Data is: \n", data);
+//   //int size = 7;
+//
+//   int i = 1;
+//   int n_frames = 0;
+//   for(t = t0+dt; t <= t0 + 3 + dt/2; t+=dt){
+//       WOLF_INFO("Starting iteration ", i, " with timestamp ", t);
+//       ++i;
+//       auto C = std::make_shared<CaptureImu>(t, sensor_ptr_, data, data_cov);
+//       //WOLF_INFO("Created new Capture");
+//       //WOLF_INFO("Processing capture");
+//       C->process();
+//       //WOLF_INFO("Doing the static initialization stuff");
+//       if (not last_frame_)
+//       {
+//         n_frames++;
+//         last_frame_ = processor_motion_->getOrigin()->getFrame();
+//         first_frame_ = last_frame_;
+//
+//         // fix Position and orientation
+//         last_frame_->getP()->fix();
+//         last_frame_->getO()->fix();
+//
+//         // impose zero velocity
+//         last_frame_->getV()->setZero();
+//         last_frame_->getV()->fix();
+//
+//         // impose zero odometry
+//         processor_motion_->setOdometry(sensor_ptr_->getProblem()->stateZero(processor_motion_->getStateStructure()));
+//       }
+//       else
+//       {
+//         assert(processor_motion_->getOrigin() && "SubscriberImuEnableable::callback: nullptr origin");
+//         assert(processor_motion_->getOrigin()->getFrame() && "SubscriberImuEnableable::callback: nullptr origin frame");
+//
+//         // new frame
+//         if (last_frame_ != processor_motion_->getOrigin()->getFrame())
+//         {
+//             n_frames++;
+//             last_frame_ = processor_motion_->getOrigin()->getFrame();
+//
+//             // TODO: We have to impose that the position is the same as for the first frame and fix it, and do the same for the orientation
+//             // impose same Position
+//             last_frame_->getP()->setState(first_frame_->getP()->getState());
+//             last_frame_->getP()->fix();
+//             //
+//             // impose same Orientqation
+//             last_frame_->getO()->setState(first_frame_->getO()->getState());
+//             last_frame_->getO()->fix();
+//
+//             // impose zero Velocity
+//             last_frame_->getV()->setZero();
+//             last_frame_->getV()->fix();
+//
+//             // impose zero odometry
+//             processor_motion_->setOdometry(sensor_ptr_->getProblem()->stateZero(processor_motion_->getStateStructure()));
+//
+//             // add zero displacement and rotation capture & feature & factor with all previous frames
+//             //assert(sensor_ptr_->getProblem());
+//             //Eigen::VectorXd zero_motion = Eigen::VectorXd::Zero(size);
+//             //zero_motion.tail<4>() = Eigen::Quaterniond::Identity().coeffs();
+//
+//             //for (auto frm_pair =  sensor_ptr_->getProblem()->getTrajectory()->begin();
+//             //    frm_pair != sensor_ptr_->getProblem()->getTrajectory()->end();
+//             //    frm_pair++)
+//             //{
+//             //  if (frm_pair->second == last_frame_)
+//             //    break;
+//             //  auto capture_zero = CaptureBase::emplace<CaptureVoid>(last_frame_, last_frame_->getTimeStamp(), nullptr);
+//             //  auto feature_zero = FeatureBase::emplace<FeatureBase>(capture_zero,
+//             //                                                        "FeatureZeroOdom",
+//             //                                                        zero_motion,
+//             //                                                        Eigen::MatrixXd::Identity(6,6) * 0.01);
+//
+//             //  FactorBase::emplace<FactorRelativePose3d>(feature_zero,
+//             //                                            feature_zero,
+//             //                                            frm_pair->second,
+//             //                                            nullptr,
+//             //                                            false,
+//             //                                            TOP_MOTION);
+//             //
+//             //}
+//           }
+//       }
+//       //WOLF_INFO("Static initialization done");
+//       if(first_frame_)
+//       {
+//         //WOLF_INFO("0 - The first frame is ", first_frame_->id(), " and it's currently estimated bias is: \n", first_frame_->getCaptureOf(sensor_ptr_)->getStateBlock('I')->getState());
+//         //WOLF_INFO("its state vector is: \n", first_frame_->getStateVector());
+//         //WOLF_INFO_COND(second_frame, "The second frame has been created");
+//         //WOLF_INFO("1 - The last (current) frame is: ", last_frame_->id(), " and it's state vector is: \n", last_frame_->getStateVector());
+//         //WOLF_INFO("2 - The current frame's estimated bias is: \n", last_frame_->getCaptureOf(sensor_ptr_)->getStateBlock('I')->getState());
+//         //WOLF_INFO("3 - The current state is (from processor_motion_): \n", processor_motion_->getState().vector("POV"));
+//       }
+//       WOLF_INFO("The current problem is:");
+//       problem_ptr_->print(4);
+//       //WOLF_INFO("Solving...");
+//       std::string report = solver_->solve(SolverManager::ReportVerbosity::FULL);
+//       WOLF_INFO("Solver Report: ", report);
+//
+//       auto state = problem_ptr_->getState();
+//       auto bias_est = sensor_ptr_->getIntrinsic()->getState();
+//       auto bias_preint = processor_motion_->getLast()->getCalibrationPreint();
+//
+//       //WOLF_INFO("Solved");
+//       if(first_frame_)
+//       {
+//         //WOLF_INFO("4 - The first frame is ", first_frame_->id(), " and it's currently estimated bias is: \n", first_frame_->getCaptureOf(sensor_ptr_)->getStateBlock('I')->getState());
+//         //WOLF_INFO("its state vector is: \n", first_frame_->getStateVector());
+//         //WOLF_INFO_COND(second_frame, "The second frame has been created");
+//         //WOLF_INFO("5 - The last (current) frame is: ", last_frame_->id(), " and it's state vector is: \n", last_frame_->getStateVector());
+//         //WOLF_INFO("6 - The current frame's estimated bias is: \n", last_frame_->getCaptureOf(sensor_ptr_)->getStateBlock('I')->getState());
+//         //WOLF_INFO("7 - The current state is (from processor_motion_): \n", processor_motion_->getState().vector("POV"));
+//         WOLF_INFO("Number of frames is ", n_frames, " with ID ", processor_motion_->getLast()->id());
+//         WOLF_INFO("The state is: ", state);
+//         WOLF_INFO("The estimated bias is: ", bias_est.transpose());
+//         WOLF_INFO("The preintegrated bias is: ", bias_preint.transpose());
+//       }
+//       if(n_frames > 1)
+//       {
+//         //EXPECT_MATRIX_APPROX(state.vector("POV"), KF0->getState().vector("POV"), 1e-9);
+//         //EXPECT_MATRIX_APPROX(bias_est, bias_groundtruth, 1e-9);
+//       }
+//       if (n_frames > 2)
+//       {
+//         //EXPECT_MATRIX_APPROX(bias_preint, bias_groundtruth, 1e-9);
+//       }
+//       WOLF_INFO("------------------------------------------------------------------------\n");
+//   }
+//}
+
+int main(int argc, char **argv)
+{
+    testing::InitGoogleTest(&argc, argv);
+    return RUN_ALL_TESTS();
+}
diff --git a/test/gtest_processor_motion_intrinsics_update.cpp b/test/gtest_processor_motion_intrinsics_update.cpp
index 4dbac962133c7d8da9f76e152a09e0749c1f2e71..a013072abf3064c5a2ac26302a1fcfe145f1a0b5 100644
--- a/test/gtest_processor_motion_intrinsics_update.cpp
+++ b/test/gtest_processor_motion_intrinsics_update.cpp
@@ -155,7 +155,7 @@ TEST_F(ProcessorImuTest, test1)
  *  SET TO TRUE  TO PRODUCE CSV FILE
  *  SET TO FALSE TO STOP PRODUCING CSV FILE
  */
-#define WRITE_CSV_FILE  false
+#define WRITE_CSV_FILE  true
 
 TEST_F(ProcessorImuTest, getState)
 {
diff --git a/test/yaml/imu2d_static_init.yaml b/test/yaml/imu2d_static_init.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..4978c8e2863908df72a336da1225667411d3022a
--- /dev/null
+++ b/test/yaml/imu2d_static_init.yaml
@@ -0,0 +1,12 @@
+type: "ProcessorImu2d"              # This must match the KEY used in the SensorFactory. Otherwise it is an error.
+
+time_tolerance: 0.0025         # Time tolerance for joining KFs
+unmeasured_perturbation_std: 0.0001
+
+keyframe_vote:
+    voting_active:      true
+    voting_aux_active:  false
+    max_time_span:      0.9999   # seconds
+    max_buff_length:    1000000000   # motion deltas
+    dist_traveled:      100000000000   # meters
+    angle_turned:       10000000000   # radians (1 rad approx 57 deg, approx 60 deg)
diff --git a/test/yaml/imu_static_init.yaml b/test/yaml/imu_static_init.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..46393f30b8f24bf645bfb1272764e6c8915e5dc2
--- /dev/null
+++ b/test/yaml/imu_static_init.yaml
@@ -0,0 +1,12 @@
+type: "ProcessorImu"              # This must match the KEY used in the SensorFactory. Otherwise it is an error.
+
+time_tolerance: 0.0025         # Time tolerance for joining KFs
+unmeasured_perturbation_std: 0.0001
+
+keyframe_vote:
+    voting_active:      true
+    voting_aux_active:  false
+    max_time_span:      0.9999   # seconds
+    max_buff_length:    1000000000   # motion deltas
+    dist_traveled:      100000000000   # meters
+    angle_turned:       10000000000   # radians (1 rad approx 57 deg, approx 60 deg)
diff --git a/test/yaml/sensor_imu.yaml b/test/yaml/sensor_imu.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3c78a00d35c785fe73381d8f6ce99a705d27ce77
--- /dev/null
+++ b/test/yaml/sensor_imu.yaml
@@ -0,0 +1,9 @@
+type: "SensorImu"             # This must match the KEY used in the SensorFactory. Otherwise it is an error.
+
+motion_variances: 
+    a_noise:                0.053     # standard deviation of Acceleration noise (same for all the axis) in m/s2
+    w_noise:                0.0011    # standard deviation of Gyroscope noise (same for all the axis) in rad/sec
+    ab_initial_stdev:       0.800     # m/s2    - initial bias 
+    wb_initial_stdev:       0.350     # rad/sec - initial bias 
+    ab_rate_stdev:          0.1       # m/s2/sqrt(s)           
+    wb_rate_stdev:          0.0400    # rad/s/sqrt(s)
diff --git a/test/yaml/sensor_imu2d_static_init.yaml b/test/yaml/sensor_imu2d_static_init.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ce810d4f5f397a7bcb8647e086c026b125fbc936
--- /dev/null
+++ b/test/yaml/sensor_imu2d_static_init.yaml
@@ -0,0 +1,9 @@
+type: "SensorImu2d"             # This must match the KEY used in the SensorFactory. Otherwise it is an error.
+
+motion_variances: 
+    a_noise:                0.053     # standard deviation of Acceleration noise (same for all the axis) in m/s2
+    w_noise:                0.0011    # standard deviation of Gyroscope noise (same for all the axis) in rad/sec
+    ab_initial_stdev:       0.800     # m/s2    - initial bias 
+    wb_initial_stdev:       0.350     # rad/sec - initial bias 
+    ab_rate_stdev:          0.1       # m/s2/sqrt(s)           
+    wb_rate_stdev:          0.0400    # rad/s/sqrt(s)
diff --git a/test/yaml/sensor_imu_static_init.yaml b/test/yaml/sensor_imu_static_init.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..700b8d6762b91b38e96391f6032b2c7c4221eabc
--- /dev/null
+++ b/test/yaml/sensor_imu_static_init.yaml
@@ -0,0 +1,9 @@
+type: "SensorImu"             # This must match the KEY used in the SensorFactory. Otherwise it is an error.
+
+motion_variances: 
+    a_noise:                0.001     # standard deviation of Acceleration noise (same for all the axis) in m/s2
+    w_noise:                0.001    # standard deviation of Gyroscope noise (same for all the axis) in rad/sec
+    ab_initial_stdev:       0.001     # m/s2    - initial bias 
+    wb_initial_stdev:       0.001     # rad/sec - initial bias 
+    ab_rate_stdev:          0.001       # m/s2/sqrt(s)           
+    wb_rate_stdev:          0.001    # rad/s/sqrt(s)