From c6af1e3f013acb18b751c32fe141de06b8342ed1 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Joan=20Vallv=C3=A9=20Navarro?= <jvallve@iri.upc.edu>
Date: Thu, 21 Oct 2021 16:22:19 +0200
Subject: [PATCH] removed plot dependency

---
 test/CMakeLists.txt               |    4 +-
 test/gtest_loop_closure_falko.cpp |  189 +--
 test/matplotlibcpp.h              | 2555 -----------------------------
 3 files changed, 63 insertions(+), 2685 deletions(-)
 delete mode 100644 test/matplotlibcpp.h

diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt
index aa60e80..1669d5d 100644
--- a/test/CMakeLists.txt
+++ b/test/CMakeLists.txt
@@ -8,7 +8,6 @@ include_directories(${GTEST_INCLUDE_DIRS})
 INCLUDE_DIRECTORIES(../src)
 INCLUDE_DIRECTORIES(/data)
 FIND_PACKAGE(Eigen3 3.3 REQUIRED)
-find_package(PythonLibs 2.7)
 INCLUDE_DIRECTORIES(${EIGEN3_INCLUDE_DIRS})
 
 ############# USE THIS TEST AS AN EXAMPLE ####################
@@ -24,5 +23,4 @@ gnss_utils_add_gtest(gtest_example gtest_example.cpp)
 target_link_libraries(gtest_example ${PROJECT_NAME})  
 
 gnss_utils_add_gtest(gtest_loop_closure_falko gtest_loop_closure_falko.cpp ${PROJECT_SOURCE_DIR}/test/data)
-target_link_libraries(gtest_loop_closure_falko ${PROJECT_NAME} ${PYTHON_LIBRARIES})
-target_include_directories(gtest_loop_closure_falko PRIVATE ${PYTHON_INCLUDE_DIRS})
+target_link_libraries(gtest_loop_closure_falko ${PROJECT_NAME})
diff --git a/test/gtest_loop_closure_falko.cpp b/test/gtest_loop_closure_falko.cpp
index be5197e..a51c576 100644
--- a/test/gtest_loop_closure_falko.cpp
+++ b/test/gtest_loop_closure_falko.cpp
@@ -1,12 +1,9 @@
-#include "../src/loop_closure_base.h"
-#include "../src/loop_closure_falko.h"
-// #include "testData2.h"
+#include "loop_closure_base.h"
+#include "loop_closure_falko.h"
 #include "data/scan_data.h"
 #include "gtest/utils_gtest.h"
-#include "matplotlibcpp.h"
 
 using namespace laserscanutils;
-namespace plt = matplotlibcpp;
 
 TEST(loop_closure_falko, TestLoopClosureFalkoAllFunctions)
 {
@@ -19,10 +16,10 @@ TEST(loop_closure_falko, TestLoopClosureFalkoAllFunctions)
     laser_params.angle_step_ = 0.00701248;
     laser_params.range_max_ = 50;
     for (int i = 0; i < scan_size; i++)
-        {
-            scan.ranges_raw_.push_back(testRanges1[i]);
-            scan2.ranges_raw_.push_back(testRanges2[i]);
-        }
+    {
+        scan.ranges_raw_.push_back(testRanges1[i]);
+        scan2.ranges_raw_.push_back(testRanges2[i]);
+    }
 
     ParameterLoopClosureFalko param;
     param.matcher_distance_th_ = 0.3;
@@ -30,15 +27,16 @@ TEST(loop_closure_falko, TestLoopClosureFalkoAllFunctions)
 
     // Test convert2LaserScanFALKO
     std::shared_ptr<falkolib::LaserScan> scan_falko = loop_cl_falko.convert2LaserScanFALKO(scan, laser_params);
-    int                                  firstPoint = scan_falko->ranges[0];
+    int firstPoint = scan_falko->ranges[0];
 
     ASSERT_EQ(firstPoint, 250);
 
     // Test extractScene2
-    auto new_scene         = std::static_pointer_cast<SceneFalko<bsc>>(loop_cl_falko.extractScene(scan,
-    laser_params)); auto new_scene2        =
-    std::static_pointer_cast<SceneFalko<bsc>>(loop_cl_falko.extractScene(scan2, laser_params)); int detectedKeypoints
-    = new_scene->keypoints_list_.size(); int  detectedDescriptors = new_scene->descriptors_list_.size();
+    auto new_scene  = std::static_pointer_cast<SceneFalko<bsc>>(loop_cl_falko.extractScene(scan, laser_params));
+    auto new_scene2 = std::static_pointer_cast<SceneFalko<bsc>>(loop_cl_falko.extractScene(scan2, laser_params));
+
+    int detectedKeypoints   = new_scene->keypoints_list_.size();
+    int detectedDescriptors = new_scene->descriptors_list_.size();
     ASSERT_EQ(detectedKeypoints, 18);
     ASSERT_EQ(detectedDescriptors, 18);
 
@@ -72,11 +70,11 @@ TEST(loop_closure_falko, TestDescriptorsRotation)
     laser_params.range_max_ = 50;
 
     for (int i = 0; i < scan_size; i++)
-        {
-            scan_1.ranges_raw_.push_back(testRanges1[i]);
-            scan_2.ranges_raw_.push_back(testRanges1[i]);
-            scan2.ranges_raw_.push_back(testRanges2[i]);
-        }
+    {
+        scan_1.ranges_raw_.push_back(testRanges1[i]);
+        scan_2.ranges_raw_.push_back(testRanges1[i]);
+        scan2.ranges_raw_.push_back(testRanges2[i]);
+    }
     // Rotate scans
     int rot = 800;
     std::rotate(scan_2.ranges_raw_.begin(), scan_2.ranges_raw_.begin() + rot, scan_2.ranges_raw_.end());
@@ -100,74 +98,22 @@ TEST(loop_closure_falko, TestDescriptorsRotation)
     double asso_dist[key_1.size()][key_2.size()];
     double min_dist_vector[key_1.size()];
     for (int i = 0; i < desc_1.size(); i++)
+    {
+        double min_dist = 1000;
+        int    asso_number;
+        for (int j = 0; j < desc_2.size(); j++)
         {
-            double min_dist = 1000;
-            int    asso_number;
-            for (int j = 0; j < desc_2.size(); j++)
-                {
-
-                    acum_distance += desc_1[i].distance(desc_2[j]);
-                    asso_dist[i][j] = desc_1[i].distance(desc_2[j]);
-                    if (asso_dist[i][j] < min_dist)
-                        {
-                            min_dist    = asso_dist[i][j];
-                            asso_number = j;
-                        }
-                }
-            // std::cout << "pair : " << i << " , " << asso_number << " , distance : " << min_dist << std::endl;
-        }
 
-    // for (int i = 0; i < desc_1.size(); i++)
-    //     {
-    //         for (int j = 0; j < desc_2.size(); j++)
-    //             {
-    //                 if (key_1[i].index == key_2[j].index + rot or key_1[i].index == key_2[j].index + rot + 1 or
-    //                     key_1[i].index == key_2[j].index - 1440 + rot)
-    //                     {
-
-    //                         std::cout << "pair : " << i << " , " << j
-    //                                   << " , distance : " << desc_1[i].distance(desc_2[j]) << std::endl;
-
-    //                         acum_distance += desc_1[i].distance(desc_2[j]);
-
-    //                         // grid to x and y
-    //                         std::vector<int> x_pos, x_pos_rotated;
-    //                         std::vector<int> y_pos, y_pos_rotated;
-
-    //                         int  desc_1_number = i;
-    //                         int  desc_2_number = j;
-    //                         auto grid_1        = new_scene->descriptors_list_rotated[i].grid;
-    //                         auto grid_2        = new_scene_2->descriptors_list_rotated[j].grid;
-
-    //                         for (int i = 0; i < radialRingNumber; i++)
-    //                             for (int j = 0; j < circularSectorNumber; j++)
-    //                                 {
-    //                                     if (grid_1[i][j] > 0)
-    //                                         {
-    //                                             x_pos.push_back(i);
-    //                                             y_pos.push_back(j);
-    //                                         }
-
-    //                                     if (grid_2[i][j] > 0)
-    //                                         {
-    //                                             x_pos_rotated.push_back(i);
-    //                                             y_pos_rotated.push_back(j);
-    //                                         }
-    //                                 }
-
-    //                         // Plotting descriptors
-    //                         // plt::title("NNMatcher BSC only keypoints");
-    //                         // plt::subplot(2, 1, 1);
-    //                         // plt::xlabel(" descriprtor not rotated");
-    //                         // plt::plot(x_pos, y_pos, "ob");
-
-    //                         // plt::subplot(2, 1, 2);
-    //                         // plt::xlabel(" descriprtor rotated");
-    //                         // plt::plot(x_pos_rotated, y_pos_rotated, "or");
-    //                         // plt::show();
-    //                     }
-    //             }
-    //     }
+            acum_distance += desc_1[i].distance(desc_2[j]);
+            asso_dist[i][j] = desc_1[i].distance(desc_2[j]);
+            if (asso_dist[i][j] < min_dist)
+            {
+                min_dist    = asso_dist[i][j];
+                asso_number = j;
+            }
+        }
+        // std::cout << "pair : " << i << " , " << asso_number << " , distance : " << min_dist << std::endl;
+    }
 }
 
 TEST(loop_closure_falko, TestMatch)
@@ -183,11 +129,11 @@ TEST(loop_closure_falko, TestMatch)
     laser_params.range_max_ = 50;
 
     for (int i = 0; i < scan_size; i++)
-        {
-            scan_1.ranges_raw_.push_back(testRanges1[i]);
-            scan_2.ranges_raw_.push_back(testRanges1[i]);
-            scan_3.ranges_raw_.push_back(testRanges2[i]);
-        }
+    {
+        scan_1.ranges_raw_.push_back(testRanges1[i]);
+        scan_2.ranges_raw_.push_back(testRanges1[i]);
+        scan_3.ranges_raw_.push_back(testRanges2[i]);
+    }
 
     // Rotate scans
     int rot = 800;
@@ -205,6 +151,8 @@ TEST(loop_closure_falko, TestMatch)
 
     auto match_1_2 = loop_cl_falko.matchScene(new_scene_1, new_scene_2);
 
+    ASSERT_TRUE(match_1_2->match);
+
     std::vector<std::pair<int, int>> asso_1_2;
     for (auto asso : match_1_2->associations)
         if (asso.second != -1)
@@ -227,10 +175,10 @@ TEST(loop_closure_falko, TestMatch2)
     // ** TEST WITH TARGET AND REFERENCE SCENE
     // std::cout << "scan size : " << target_scan_1.size() << std::endl;
     for (int i = 0; i < target_scan_1.size(); i++)
-        {
-            scan_target.ranges_raw_.push_back(target_scan_1[i]);
-            scan_ref.ranges_raw_.push_back(reference_scan_1[i]);
-        }
+    {
+        scan_target.ranges_raw_.push_back(target_scan_1[i]);
+        scan_ref.ranges_raw_.push_back(reference_scan_1[i]);
+    }
 
     ParameterLoopClosureFalko param;
     param.use_descriptors_     = true;
@@ -244,10 +192,8 @@ TEST(loop_closure_falko, TestMatch2)
     laser_params.angle_step_ = 0.00701248;
 
     LoopClosureFalkoAht<bsc, bscExtractor> loop_cl_falko_2(param);
-    auto                                   new_scene_target =
-        std::static_pointer_cast<SceneFalko<bsc>>(loop_cl_falko_2.extractScene(scan_target, laser_params));
-    auto new_scene_reference =
-        std::static_pointer_cast<SceneFalko<bsc>>(loop_cl_falko_2.extractScene(scan_ref, laser_params));
+    auto new_scene_target       = std::static_pointer_cast<SceneFalko<bsc>>(loop_cl_falko_2.extractScene(scan_target, laser_params));
+    auto new_scene_reference    = std::static_pointer_cast<SceneFalko<bsc>>(loop_cl_falko_2.extractScene(scan_ref, laser_params));
 
     // std::cout << "keypoints target size : " << new_scene_target->keypoints_list_.size() << std::endl;
     // std::cout << "keypoints reference size : " << new_scene_reference->keypoints_list_.size() << std::endl;
@@ -255,10 +201,10 @@ TEST(loop_closure_falko, TestMatch2)
     auto match_r_t = loop_cl_falko_2.matchScene(new_scene_reference, new_scene_target);
     for (int i = 0; i < match_r_t->associations.size(); i++)
         if (match_r_t->associations[i].second != -1)
-            {
-                // std::cout << "id first : " << match_r_t->associations[i].first << std::endl;
-                // std::cout << "id second : " << match_r_t->associations[i].second << std::endl;
-            }
+        {
+            std::cout << "id first : " << match_r_t->associations[i].first << std::endl;
+            std::cout << "id second : " << match_r_t->associations[i].second << std::endl;
+        }
 
     // std::cout << "transform : " << match_r_t->transform_vector.transpose() << std::endl;
 
@@ -270,40 +216,29 @@ TEST(loop_closure_falko, TestMatch2)
 
     // Plotting keypoints scenes
     for (int i = 0; i < key_ref.size(); i++)
-        {
-            x_ref_all.push_back(key_ref[i].point.x());
-            y_ref_all.push_back(key_ref[i].point.y());
-        }
+    {
+        x_ref_all.push_back(key_ref[i].point.x());
+        y_ref_all.push_back(key_ref[i].point.y());
+    }
 
     for (int i = 0; i < key_target.size(); i++)
-        {
-            x_target_all.push_back(key_target[i].point.x());
-            y_target_all.push_back(key_target[i].point.y());
-        }
-
-    plt::title("AHTMatcher BSC without descriptors");
-    plt::plot(x_ref_all, y_ref_all, "ob");
-    plt::plot(x_target_all, y_target_all, "or");
+    {
+        x_target_all.push_back(key_target[i].point.x());
+        y_target_all.push_back(key_target[i].point.y());
+    }
 
     std::vector<double> x_ref, x_target;
     std::vector<double> y_ref, y_target;
     for (auto asso : match_r_t->associations)
         if (asso.second != -1)
-            {
-                // auto a = key_ref[asso.first].point.x();
-                x_ref.push_back(key_ref[asso.first].point.x());
-                y_ref.push_back(key_ref[asso.first].point.y());
-
-                x_target.push_back(key_target[asso.second].point.x());
-                y_target.push_back(key_target[asso.second].point.y());
-            }
-
-    for (int i = 0; i < x_ref.size(); i++)
         {
-            plt::plot({x_ref[i], x_target[i]}, {y_ref[i], y_target[i]}, "g");
-        }
+            // auto a = key_ref[asso.first].point.x();
+            x_ref.push_back(key_ref[asso.first].point.x());
+            y_ref.push_back(key_ref[asso.first].point.y());
 
-    // plt::show();
+            x_target.push_back(key_target[asso.second].point.x());
+            y_target.push_back(key_target[asso.second].point.y());
+        }
 }
 
 int main(int argc, char **argv)
diff --git a/test/matplotlibcpp.h b/test/matplotlibcpp.h
deleted file mode 100644
index 23553ae..0000000
--- a/test/matplotlibcpp.h
+++ /dev/null
@@ -1,2555 +0,0 @@
-#pragma once
-
-// Python headers must be included before any system headers, since
-// they define _POSIX_C_SOURCE
-#include <Python.h>
-
-#include <vector>
-#include <map>
-#include <array>
-#include <numeric>
-#include <algorithm>
-#include <stdexcept>
-#include <iostream>
-#include <cstdint> // <cstdint> requires c++11 support
-#include <functional>
-
-#ifndef WITHOUT_NUMPY
-#  define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
-#  include <numpy/arrayobject.h>
-
-#  ifdef WITH_OPENCV
-#    include <opencv2/opencv.hpp>
-#  endif // WITH_OPENCV
-
-/*
- * A bunch of constants were removed in OpenCV 4 in favour of enum classes, so
- * define the ones we need here.
- */
-#  if CV_MAJOR_VERSION > 3
-#    define CV_BGR2RGB cv::COLOR_BGR2RGB
-#    define CV_BGRA2RGBA cv::COLOR_BGRA2RGBA
-#  endif
-#endif // WITHOUT_NUMPY
-
-#if PY_MAJOR_VERSION >= 3
-#  define PyString_FromString PyUnicode_FromString
-#  define PyInt_FromLong PyLong_FromLong
-#  define PyString_FromString PyUnicode_FromString
-#endif
-
-
-namespace matplotlibcpp {
-namespace detail {
-
-static std::string s_backend;
-
-struct _interpreter {
-    PyObject* s_python_function_arrow;
-    PyObject *s_python_function_show;
-    PyObject *s_python_function_close;
-    PyObject *s_python_function_draw;
-    PyObject *s_python_function_pause;
-    PyObject *s_python_function_save;
-    PyObject *s_python_function_figure;
-    PyObject *s_python_function_fignum_exists;
-    PyObject *s_python_function_plot;
-    PyObject *s_python_function_quiver;
-    PyObject* s_python_function_contour;
-    PyObject *s_python_function_semilogx;
-    PyObject *s_python_function_semilogy;
-    PyObject *s_python_function_loglog;
-    PyObject *s_python_function_fill;
-    PyObject *s_python_function_fill_between;
-    PyObject *s_python_function_hist;
-    PyObject *s_python_function_imshow;
-    PyObject *s_python_function_scatter;
-    PyObject *s_python_function_boxplot;
-    PyObject *s_python_function_subplot;
-    PyObject *s_python_function_subplot2grid;
-    PyObject *s_python_function_legend;
-    PyObject *s_python_function_xlim;
-    PyObject *s_python_function_ion;
-    PyObject *s_python_function_ginput;
-    PyObject *s_python_function_ylim;
-    PyObject *s_python_function_title;
-    PyObject *s_python_function_axis;
-    PyObject *s_python_function_axvline;
-    PyObject *s_python_function_axvspan;
-    PyObject *s_python_function_xlabel;
-    PyObject *s_python_function_ylabel;
-    PyObject *s_python_function_gca;
-    PyObject *s_python_function_xticks;
-    PyObject *s_python_function_yticks;
-    PyObject* s_python_function_margins;
-    PyObject *s_python_function_tick_params;
-    PyObject *s_python_function_grid;
-    PyObject* s_python_function_cla;
-    PyObject *s_python_function_clf;
-    PyObject *s_python_function_errorbar;
-    PyObject *s_python_function_annotate;
-    PyObject *s_python_function_tight_layout;
-    PyObject *s_python_colormap;
-    PyObject *s_python_empty_tuple;
-    PyObject *s_python_function_stem;
-    PyObject *s_python_function_xkcd;
-    PyObject *s_python_function_text;
-    PyObject *s_python_function_suptitle;
-    PyObject *s_python_function_bar;
-    PyObject *s_python_function_barh;
-    PyObject *s_python_function_colorbar;
-    PyObject *s_python_function_subplots_adjust;
-
-
-    /* For now, _interpreter is implemented as a singleton since its currently not possible to have
-       multiple independent embedded python interpreters without patching the python source code
-       or starting a separate process for each. [1]
-       Furthermore, many python objects expect that they are destructed in the same thread as they
-       were constructed. [2] So for advanced usage, a `kill()` function is provided so that library
-       users can manually ensure that the interpreter is constructed and destroyed within the
-       same thread.
-
-         1: http://bytes.com/topic/python/answers/793370-multiple-independent-python-interpreters-c-c-program
-         2: https://github.com/lava/matplotlib-cpp/pull/202#issue-436220256
-       */
-
-    static _interpreter& get() {
-        return interkeeper(false);
-    }
-
-    static _interpreter& kill() {
-        return interkeeper(true);
-    }
-
-    // Stores the actual singleton object referenced by `get()` and `kill()`.
-    static _interpreter& interkeeper(bool should_kill) {
-        static _interpreter ctx;
-        if (should_kill)
-            ctx.~_interpreter();
-        return ctx;
-    }
-
-    PyObject* safe_import(PyObject* module, std::string fname) {
-        PyObject* fn = PyObject_GetAttrString(module, fname.c_str());
-
-        if (!fn)
-            throw std::runtime_error(std::string("Couldn't find required function: ") + fname);
-
-        if (!PyFunction_Check(fn))
-            throw std::runtime_error(fname + std::string(" is unexpectedly not a PyFunction."));
-
-        return fn;
-    }
-
-private:
-
-#ifndef WITHOUT_NUMPY
-#  if PY_MAJOR_VERSION >= 3
-
-    void *import_numpy() {
-        import_array(); // initialize C-API
-        return NULL;
-    }
-
-#  else
-
-    void import_numpy() {
-        import_array(); // initialize C-API
-    }
-
-#  endif
-#endif
-
-    _interpreter() {
-
-        // optional but recommended
-#if PY_MAJOR_VERSION >= 3
-        wchar_t name[] = L"plotting";
-#else
-        char name[] = "plotting";
-#endif
-        Py_SetProgramName(name);
-        Py_Initialize();
-
-        wchar_t const *dummy_args[] = {L"Python", NULL};  // const is needed because literals must not be modified
-        wchar_t const **argv = dummy_args;
-        int             argc = sizeof(dummy_args)/sizeof(dummy_args[0])-1;
-        char ** argm = (char **)(argv);
-        PySys_SetArgv(argc, argm);
-
-#ifndef WITHOUT_NUMPY
-        import_numpy(); // initialize numpy C-API
-#endif
-
-        PyObject* matplotlibname = PyString_FromString("matplotlib");
-        PyObject* pyplotname = PyString_FromString("matplotlib.pyplot");
-        PyObject* cmname  = PyString_FromString("matplotlib.cm");
-        PyObject* pylabname  = PyString_FromString("pylab");
-        if (!pyplotname || !pylabname || !matplotlibname || !cmname) {
-            throw std::runtime_error("couldnt create string");
-        }
-
-        PyObject* matplotlib = PyImport_Import(matplotlibname);
-        Py_DECREF(matplotlibname);
-        if (!matplotlib) {
-            PyErr_Print();
-            throw std::runtime_error("Error loading module matplotlib!");
-        }
-
-        // matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
-        // or matplotlib.backends is imported for the first time
-        if (!s_backend.empty()) {
-            PyObject_CallMethod(matplotlib, const_cast<char*>("use"), const_cast<char*>("s"), s_backend.c_str());
-        }
-
-        PyObject* pymod = PyImport_Import(pyplotname);
-        Py_DECREF(pyplotname);
-        if (!pymod) { throw std::runtime_error("Error loading module matplotlib.pyplot!"); }
-
-        s_python_colormap = PyImport_Import(cmname);
-        Py_DECREF(cmname);
-        if (!s_python_colormap) { throw std::runtime_error("Error loading module matplotlib.cm!"); }
-
-        PyObject* pylabmod = PyImport_Import(pylabname);
-        Py_DECREF(pylabname);
-        if (!pylabmod) { throw std::runtime_error("Error loading module pylab!"); }
-
-        s_python_function_arrow = safe_import(pymod, "arrow");
-        s_python_function_show = safe_import(pymod, "show");
-        s_python_function_close = safe_import(pymod, "close");
-        s_python_function_draw = safe_import(pymod, "draw");
-        s_python_function_pause = safe_import(pymod, "pause");
-        s_python_function_figure = safe_import(pymod, "figure");
-        s_python_function_fignum_exists = safe_import(pymod, "fignum_exists");
-        s_python_function_plot = safe_import(pymod, "plot");
-        s_python_function_quiver = safe_import(pymod, "quiver");
-        s_python_function_contour = safe_import(pymod, "contour");
-        s_python_function_semilogx = safe_import(pymod, "semilogx");
-        s_python_function_semilogy = safe_import(pymod, "semilogy");
-        s_python_function_loglog = safe_import(pymod, "loglog");
-        s_python_function_fill = safe_import(pymod, "fill");
-        s_python_function_fill_between = safe_import(pymod, "fill_between");
-        s_python_function_hist = safe_import(pymod,"hist");
-        s_python_function_scatter = safe_import(pymod,"scatter");
-        s_python_function_boxplot = safe_import(pymod,"boxplot");
-        s_python_function_subplot = safe_import(pymod, "subplot");
-        s_python_function_subplot2grid = safe_import(pymod, "subplot2grid");
-        s_python_function_legend = safe_import(pymod, "legend");
-        s_python_function_ylim = safe_import(pymod, "ylim");
-        s_python_function_title = safe_import(pymod, "title");
-        s_python_function_axis = safe_import(pymod, "axis");
-        s_python_function_axvline = safe_import(pymod, "axvline");
-        s_python_function_axvspan = safe_import(pymod, "axvspan");
-        s_python_function_xlabel = safe_import(pymod, "xlabel");
-        s_python_function_ylabel = safe_import(pymod, "ylabel");
-        s_python_function_gca = safe_import(pymod, "gca");
-        s_python_function_xticks = safe_import(pymod, "xticks");
-        s_python_function_yticks = safe_import(pymod, "yticks");
-        s_python_function_margins = safe_import(pymod, "margins");
-        s_python_function_tick_params = safe_import(pymod, "tick_params");
-        s_python_function_grid = safe_import(pymod, "grid");
-        s_python_function_xlim = safe_import(pymod, "xlim");
-        s_python_function_ion = safe_import(pymod, "ion");
-        s_python_function_ginput = safe_import(pymod, "ginput");
-        s_python_function_save = safe_import(pylabmod, "savefig");
-        s_python_function_annotate = safe_import(pymod,"annotate");
-        s_python_function_cla = safe_import(pymod, "cla");
-        s_python_function_clf = safe_import(pymod, "clf");
-        s_python_function_errorbar = safe_import(pymod, "errorbar");
-        s_python_function_tight_layout = safe_import(pymod, "tight_layout");
-        s_python_function_stem = safe_import(pymod, "stem");
-        s_python_function_xkcd = safe_import(pymod, "xkcd");
-        s_python_function_text = safe_import(pymod, "text");
-        s_python_function_suptitle = safe_import(pymod, "suptitle");
-        s_python_function_bar = safe_import(pymod,"bar");
-        s_python_function_barh = safe_import(pymod, "barh");
-        s_python_function_colorbar = PyObject_GetAttrString(pymod, "colorbar");
-        s_python_function_subplots_adjust = safe_import(pymod,"subplots_adjust");
-#ifndef WITHOUT_NUMPY
-        s_python_function_imshow = safe_import(pymod, "imshow");
-#endif
-        s_python_empty_tuple = PyTuple_New(0);
-    }
-
-    ~_interpreter() {
-        Py_Finalize();
-    }
-};
-
-} // end namespace detail
-
-/// Select the backend
-///
-/// **NOTE:** This must be called before the first plot command to have
-/// any effect.
-///
-/// Mainly useful to select the non-interactive 'Agg' backend when running
-/// matplotlibcpp in headless mode, for example on a machine with no display.
-///
-/// See also: https://matplotlib.org/2.0.2/api/matplotlib_configuration_api.html#matplotlib.use
-inline void backend(const std::string& name)
-{
-    detail::s_backend = name;
-}
-
-inline bool annotate(std::string annotation, double x, double y)
-{
-    detail::_interpreter::get();
-
-    PyObject * xy = PyTuple_New(2);
-    PyObject * str = PyString_FromString(annotation.c_str());
-
-    PyTuple_SetItem(xy,0,PyFloat_FromDouble(x));
-    PyTuple_SetItem(xy,1,PyFloat_FromDouble(y));
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "xy", xy);
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, str);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_annotate, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-namespace detail {
-
-#ifndef WITHOUT_NUMPY
-// Type selector for numpy array conversion
-template <typename T> struct select_npy_type { const static NPY_TYPES type = NPY_NOTYPE; }; //Default
-template <> struct select_npy_type<double> { const static NPY_TYPES type = NPY_DOUBLE; };
-template <> struct select_npy_type<float> { const static NPY_TYPES type = NPY_FLOAT; };
-template <> struct select_npy_type<bool> { const static NPY_TYPES type = NPY_BOOL; };
-template <> struct select_npy_type<int8_t> { const static NPY_TYPES type = NPY_INT8; };
-template <> struct select_npy_type<int16_t> { const static NPY_TYPES type = NPY_SHORT; };
-template <> struct select_npy_type<int32_t> { const static NPY_TYPES type = NPY_INT; };
-template <> struct select_npy_type<int64_t> { const static NPY_TYPES type = NPY_INT64; };
-template <> struct select_npy_type<uint8_t> { const static NPY_TYPES type = NPY_UINT8; };
-template <> struct select_npy_type<uint16_t> { const static NPY_TYPES type = NPY_USHORT; };
-template <> struct select_npy_type<uint32_t> { const static NPY_TYPES type = NPY_ULONG; };
-template <> struct select_npy_type<uint64_t> { const static NPY_TYPES type = NPY_UINT64; };
-
-// Sanity checks; comment them out or change the numpy type below if you're compiling on
-// a platform where they don't apply
-//static_assert(sizeof(long long) == 8);
-//template <> struct select_npy_type<long long> { const static NPY_TYPES type = NPY_INT64; };
-//static_assert(sizeof(unsigned long long) == 8);
-//template <> struct select_npy_type<unsigned long long> { const static NPY_TYPES type = NPY_UINT64; };
-// TODO: add int, long, etc.
-
-template<typename Numeric>
-PyObject* get_array(const std::vector<Numeric>& v)
-{
-    npy_intp vsize = v.size();
-    NPY_TYPES type = select_npy_type<Numeric>::type;
-    if (type == NPY_NOTYPE) {
-        size_t memsize = v.size()*sizeof(double);
-        double* dp = static_cast<double*>(::malloc(memsize));
-        for (size_t i=0; i<v.size(); ++i)
-            dp[i] = v[i];
-        PyObject* varray = PyArray_SimpleNewFromData(1, &vsize, NPY_DOUBLE, dp);
-        PyArray_UpdateFlags(reinterpret_cast<PyArrayObject*>(varray), NPY_ARRAY_OWNDATA);
-        return varray;
-    }
-    
-    PyObject* varray = PyArray_SimpleNewFromData(1, &vsize, type, (void*)(v.data()));
-    return varray;
-}
-
-
-template<typename Numeric>
-PyObject* get_2darray(const std::vector<::std::vector<Numeric>>& v)
-{
-    if (v.size() < 1) throw std::runtime_error("get_2d_array v too small");
-
-    npy_intp vsize[2] = {static_cast<npy_intp>(v.size()),
-                         static_cast<npy_intp>(v[0].size())};
-
-    PyArrayObject *varray =
-        (PyArrayObject *)PyArray_SimpleNew(2, vsize, NPY_DOUBLE);
-
-    double *vd_begin = static_cast<double *>(PyArray_DATA(varray));
-
-    for (const ::std::vector<Numeric> &v_row : v) {
-      if (v_row.size() != static_cast<size_t>(vsize[1]))
-        throw std::runtime_error("Missmatched array size");
-      std::copy(v_row.begin(), v_row.end(), vd_begin);
-      vd_begin += vsize[1];
-    }
-
-    return reinterpret_cast<PyObject *>(varray);
-}
-
-#else // fallback if we don't have numpy: copy every element of the given vector
-
-template<typename Numeric>
-PyObject* get_array(const std::vector<Numeric>& v)
-{
-    PyObject* list = PyList_New(v.size());
-    for(size_t i = 0; i < v.size(); ++i) {
-        PyList_SetItem(list, i, PyFloat_FromDouble(v.at(i)));
-    }
-    return list;
-}
-
-#endif // WITHOUT_NUMPY
-
-// sometimes, for labels and such, we need string arrays
-inline PyObject * get_array(const std::vector<std::string>& strings)
-{
-  PyObject* list = PyList_New(strings.size());
-  for (std::size_t i = 0; i < strings.size(); ++i) {
-    PyList_SetItem(list, i, PyString_FromString(strings[i].c_str()));
-  }
-  return list;
-}
-
-// not all matplotlib need 2d arrays, some prefer lists of lists
-template<typename Numeric>
-PyObject* get_listlist(const std::vector<std::vector<Numeric>>& ll)
-{
-  PyObject* listlist = PyList_New(ll.size());
-  for (std::size_t i = 0; i < ll.size(); ++i) {
-    PyList_SetItem(listlist, i, get_array(ll[i]));
-  }
-  return listlist;
-}
-
-} // namespace detail
-
-/// Plot a line through the given x and y data points..
-/// 
-/// See: https://matplotlib.org/3.2.1/api/_as_gen/matplotlib.pyplot.plot.html
-template<typename Numeric>
-bool plot(const std::vector<Numeric> &x, const std::vector<Numeric> &y, const std::map<std::string, std::string>& keywords)
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    // using numpy arrays
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    // construct positional args
-    PyObject* args = PyTuple_New(2);
-    PyTuple_SetItem(args, 0, xarray);
-    PyTuple_SetItem(args, 1, yarray);
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-// TODO - it should be possible to make this work by implementing
-// a non-numpy alternative for `detail::get_2darray()`.
-#ifndef WITHOUT_NUMPY
-template <typename Numeric>
-void plot_surface(const std::vector<::std::vector<Numeric>> &x,
-                  const std::vector<::std::vector<Numeric>> &y,
-                  const std::vector<::std::vector<Numeric>> &z,
-                  const std::map<std::string, std::string> &keywords =
-                      std::map<std::string, std::string>())
-{
-  detail::_interpreter::get();
-
-  // We lazily load the modules here the first time this function is called
-  // because I'm not sure that we can assume "matplotlib installed" implies
-  // "mpl_toolkits installed" on all platforms, and we don't want to require
-  // it for people who don't need 3d plots.
-  static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr;
-  if (!mpl_toolkitsmod) {
-    detail::_interpreter::get();
-
-    PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits");
-    PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d");
-    if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); }
-
-    mpl_toolkitsmod = PyImport_Import(mpl_toolkits);
-    Py_DECREF(mpl_toolkits);
-    if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); }
-
-    axis3dmod = PyImport_Import(axis3d);
-    Py_DECREF(axis3d);
-    if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); }
-  }
-
-  assert(x.size() == y.size());
-  assert(y.size() == z.size());
-
-  // using numpy arrays
-  PyObject *xarray = detail::get_2darray(x);
-  PyObject *yarray = detail::get_2darray(y);
-  PyObject *zarray = detail::get_2darray(z);
-
-  // construct positional args
-  PyObject *args = PyTuple_New(3);
-  PyTuple_SetItem(args, 0, xarray);
-  PyTuple_SetItem(args, 1, yarray);
-  PyTuple_SetItem(args, 2, zarray);
-
-  // Build up the kw args.
-  PyObject *kwargs = PyDict_New();
-  PyDict_SetItemString(kwargs, "rstride", PyInt_FromLong(1));
-  PyDict_SetItemString(kwargs, "cstride", PyInt_FromLong(1));
-
-  PyObject *python_colormap_coolwarm = PyObject_GetAttrString(
-      detail::_interpreter::get().s_python_colormap, "coolwarm");
-
-  PyDict_SetItemString(kwargs, "cmap", python_colormap_coolwarm);
-
-  for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
-       it != keywords.end(); ++it) {
-    PyDict_SetItemString(kwargs, it->first.c_str(),
-                         PyString_FromString(it->second.c_str()));
-  }
-
-
-  PyObject *fig =
-      PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
-                          detail::_interpreter::get().s_python_empty_tuple);
-  if (!fig) throw std::runtime_error("Call to figure() failed.");
-
-  PyObject *gca_kwargs = PyDict_New();
-  PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d"));
-
-  PyObject *gca = PyObject_GetAttrString(fig, "gca");
-  if (!gca) throw std::runtime_error("No gca");
-  Py_INCREF(gca);
-  PyObject *axis = PyObject_Call(
-      gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs);
-
-  if (!axis) throw std::runtime_error("No axis");
-  Py_INCREF(axis);
-
-  Py_DECREF(gca);
-  Py_DECREF(gca_kwargs);
-
-  PyObject *plot_surface = PyObject_GetAttrString(axis, "plot_surface");
-  if (!plot_surface) throw std::runtime_error("No surface");
-  Py_INCREF(plot_surface);
-  PyObject *res = PyObject_Call(plot_surface, args, kwargs);
-  if (!res) throw std::runtime_error("failed surface");
-  Py_DECREF(plot_surface);
-
-  Py_DECREF(axis);
-  Py_DECREF(args);
-  Py_DECREF(kwargs);
-  if (res) Py_DECREF(res);
-}
-#endif // WITHOUT_NUMPY
-
-template <typename Numeric>
-void plot3(const std::vector<Numeric> &x,
-                  const std::vector<Numeric> &y,
-                  const std::vector<Numeric> &z,
-                  const std::map<std::string, std::string> &keywords =
-                      std::map<std::string, std::string>())
-{
-  detail::_interpreter::get();
-
-  // Same as with plot_surface: We lazily load the modules here the first time 
-  // this function is called because I'm not sure that we can assume "matplotlib 
-  // installed" implies "mpl_toolkits installed" on all platforms, and we don't 
-  // want to require it for people who don't need 3d plots.
-  static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr;
-  if (!mpl_toolkitsmod) {
-    detail::_interpreter::get();
-
-    PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits");
-    PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d");
-    if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); }
-
-    mpl_toolkitsmod = PyImport_Import(mpl_toolkits);
-    Py_DECREF(mpl_toolkits);
-    if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); }
-
-    axis3dmod = PyImport_Import(axis3d);
-    Py_DECREF(axis3d);
-    if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); }
-  }
-
-  assert(x.size() == y.size());
-  assert(y.size() == z.size());
-
-  PyObject *xarray = detail::get_array(x);
-  PyObject *yarray = detail::get_array(y);
-  PyObject *zarray = detail::get_array(z);
-
-  // construct positional args
-  PyObject *args = PyTuple_New(3);
-  PyTuple_SetItem(args, 0, xarray);
-  PyTuple_SetItem(args, 1, yarray);
-  PyTuple_SetItem(args, 2, zarray);
-
-  // Build up the kw args.
-  PyObject *kwargs = PyDict_New();
-
-  for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
-       it != keywords.end(); ++it) {
-    PyDict_SetItemString(kwargs, it->first.c_str(),
-                         PyString_FromString(it->second.c_str()));
-  }
-
-  PyObject *fig =
-      PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
-                          detail::_interpreter::get().s_python_empty_tuple);
-  if (!fig) throw std::runtime_error("Call to figure() failed.");
-
-  PyObject *gca_kwargs = PyDict_New();
-  PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d"));
-
-  PyObject *gca = PyObject_GetAttrString(fig, "gca");
-  if (!gca) throw std::runtime_error("No gca");
-  Py_INCREF(gca);
-  PyObject *axis = PyObject_Call(
-      gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs);
-
-  if (!axis) throw std::runtime_error("No axis");
-  Py_INCREF(axis);
-
-  Py_DECREF(gca);
-  Py_DECREF(gca_kwargs);
-
-  PyObject *plot3 = PyObject_GetAttrString(axis, "plot");
-  if (!plot3) throw std::runtime_error("No 3D line plot");
-  Py_INCREF(plot3);
-  PyObject *res = PyObject_Call(plot3, args, kwargs);
-  if (!res) throw std::runtime_error("Failed 3D line plot");
-  Py_DECREF(plot3);
-
-  Py_DECREF(axis);
-  Py_DECREF(args);
-  Py_DECREF(kwargs);
-  if (res) Py_DECREF(res);
-}
-
-template<typename Numeric>
-bool stem(const std::vector<Numeric> &x, const std::vector<Numeric> &y, const std::map<std::string, std::string>& keywords)
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    // using numpy arrays
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    // construct positional args
-    PyObject* args = PyTuple_New(2);
-    PyTuple_SetItem(args, 0, xarray);
-    PyTuple_SetItem(args, 1, yarray);
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for (std::map<std::string, std::string>::const_iterator it =
-            keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(),
-                PyString_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(
-            detail::_interpreter::get().s_python_function_stem, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    if (res)
-        Py_DECREF(res);
-
-    return res;
-}
-
-template< typename Numeric >
-bool fill(const std::vector<Numeric>& x, const std::vector<Numeric>& y, const std::map<std::string, std::string>& keywords)
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    // using numpy arrays
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    // construct positional args
-    PyObject* args = PyTuple_New(2);
-    PyTuple_SetItem(args, 0, xarray);
-    PyTuple_SetItem(args, 1, yarray);
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for (auto it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-
-    if (res) Py_DECREF(res);
-
-    return res;
-}
-
-template< typename Numeric >
-bool fill_between(const std::vector<Numeric>& x, const std::vector<Numeric>& y1, const std::vector<Numeric>& y2, const std::map<std::string, std::string>& keywords)
-{
-    assert(x.size() == y1.size());
-    assert(x.size() == y2.size());
-
-    detail::_interpreter::get();
-
-    // using numpy arrays
-    PyObject* xarray = detail::get_array(x);
-    PyObject* y1array = detail::get_array(y1);
-    PyObject* y2array = detail::get_array(y2);
-
-    // construct positional args
-    PyObject* args = PyTuple_New(3);
-    PyTuple_SetItem(args, 0, xarray);
-    PyTuple_SetItem(args, 1, y1array);
-    PyTuple_SetItem(args, 2, y2array);
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill_between, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template <typename Numeric>
-bool arrow(Numeric x, Numeric y, Numeric end_x, Numeric end_y, const std::string& fc = "r",
-           const std::string ec = "k", Numeric head_length = 0.25, Numeric head_width = 0.1625) {
-    PyObject* obj_x = PyFloat_FromDouble(x);
-    PyObject* obj_y = PyFloat_FromDouble(y);
-    PyObject* obj_end_x = PyFloat_FromDouble(end_x);
-    PyObject* obj_end_y = PyFloat_FromDouble(end_y);
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "fc", PyString_FromString(fc.c_str()));
-    PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str()));
-    PyDict_SetItemString(kwargs, "head_width", PyFloat_FromDouble(head_width));
-    PyDict_SetItemString(kwargs, "head_length", PyFloat_FromDouble(head_length));
-
-    PyObject* plot_args = PyTuple_New(4);
-    PyTuple_SetItem(plot_args, 0, obj_x);
-    PyTuple_SetItem(plot_args, 1, obj_y);
-    PyTuple_SetItem(plot_args, 2, obj_end_x);
-    PyTuple_SetItem(plot_args, 3, obj_end_y);
-
-    PyObject* res =
-            PyObject_Call(detail::_interpreter::get().s_python_function_arrow, plot_args, kwargs);
-
-    Py_DECREF(plot_args);
-    Py_DECREF(kwargs);
-    if (res)
-        Py_DECREF(res);
-
-    return res;
-}
-
-template< typename Numeric>
-bool hist(const std::vector<Numeric>& y, long bins=10,std::string color="b",
-          double alpha=1.0, bool cumulative=false)
-{
-    detail::_interpreter::get();
-
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins));
-    PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str()));
-    PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha));
-    PyDict_SetItemString(kwargs, "cumulative", cumulative ? Py_True : Py_False);
-
-    PyObject* plot_args = PyTuple_New(1);
-
-    PyTuple_SetItem(plot_args, 0, yarray);
-
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs);
-
-
-    Py_DECREF(plot_args);
-    Py_DECREF(kwargs);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-#ifndef WITHOUT_NUMPY
-namespace detail {
-
-inline void imshow(void *ptr, const NPY_TYPES type, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords, PyObject** out)
-{
-    assert(type == NPY_UINT8 || type == NPY_FLOAT);
-    assert(colors == 1 || colors == 3 || colors == 4);
-
-    detail::_interpreter::get();
-
-    // construct args
-    npy_intp dims[3] = { rows, columns, colors };
-    PyObject *args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, PyArray_SimpleNewFromData(colors == 1 ? 2 : 3, dims, type, ptr));
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_imshow, args, kwargs);
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    if (!res)
-        throw std::runtime_error("Call to imshow() failed");
-    if (out)
-        *out = res;
-    else
-        Py_DECREF(res);
-}
-
-} // namespace detail
-
-inline void imshow(const unsigned char *ptr, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords = {}, PyObject** out = nullptr)
-{
-    detail::imshow((void *) ptr, NPY_UINT8, rows, columns, colors, keywords, out);
-}
-
-inline void imshow(const float *ptr, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords = {}, PyObject** out = nullptr)
-{
-    detail::imshow((void *) ptr, NPY_FLOAT, rows, columns, colors, keywords, out);
-}
-
-#ifdef WITH_OPENCV
-void imshow(const cv::Mat &image, const std::map<std::string, std::string> &keywords = {})
-{
-    // Convert underlying type of matrix, if needed
-    cv::Mat image2;
-    NPY_TYPES npy_type = NPY_UINT8;
-    switch (image.type() & CV_MAT_DEPTH_MASK) {
-    case CV_8U:
-        image2 = image;
-        break;
-    case CV_32F:
-        image2 = image;
-        npy_type = NPY_FLOAT;
-        break;
-    default:
-        image.convertTo(image2, CV_MAKETYPE(CV_8U, image.channels()));
-    }
-
-    // If color image, convert from BGR to RGB
-    switch (image2.channels()) {
-    case 3:
-        cv::cvtColor(image2, image2, CV_BGR2RGB);
-        break;
-    case 4:
-        cv::cvtColor(image2, image2, CV_BGRA2RGBA);
-    }
-
-    detail::imshow(image2.data, npy_type, image2.rows, image2.cols, image2.channels(), keywords);
-}
-#endif // WITH_OPENCV
-#endif // WITHOUT_NUMPY
-
-template<typename NumericX, typename NumericY>
-bool scatter(const std::vector<NumericX>& x,
-             const std::vector<NumericY>& y,
-             const double s=1.0, // The marker size in points**2
-             const std::map<std::string, std::string> & keywords = {})
-{
-    detail::_interpreter::get();
-
-    assert(x.size() == y.size());
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "s", PyLong_FromLong(s));
-    for (const auto& it : keywords)
-    {
-        PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str()));
-    }
-
-    PyObject* plot_args = PyTuple_New(2);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_scatter, plot_args, kwargs);
-
-    Py_DECREF(plot_args);
-    Py_DECREF(kwargs);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename Numeric>
-bool boxplot(const std::vector<std::vector<Numeric>>& data,
-             const std::vector<std::string>& labels = {},
-             const std::map<std::string, std::string> & keywords = {})
-{
-    detail::_interpreter::get();
-
-    PyObject* listlist = detail::get_listlist(data);
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, listlist);
-
-    PyObject* kwargs = PyDict_New();
-
-    // kwargs needs the labels, if there are (the correct number of) labels
-    if (!labels.empty() && labels.size() == data.size()) {
-        PyDict_SetItemString(kwargs, "labels", detail::get_array(labels));
-    }
-
-    // take care of the remaining keywords
-    for (const auto& it : keywords)
-    {
-        PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_boxplot, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename Numeric>
-bool boxplot(const std::vector<Numeric>& data,
-             const std::map<std::string, std::string> & keywords = {})
-{
-    detail::_interpreter::get();
-
-    PyObject* vector = detail::get_array(data);
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, vector);
-
-    PyObject* kwargs = PyDict_New();
-    for (const auto& it : keywords)
-    {
-        PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_boxplot, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template <typename Numeric>
-bool bar(const std::vector<Numeric> &               x,
-         const std::vector<Numeric> &               y,
-         std::string                                ec       = "black",
-         std::string                                ls       = "-",
-         double                                     lw       = 1.0,
-         const std::map<std::string, std::string> & keywords = {})
-{
-  detail::_interpreter::get();
-
-  PyObject * xarray = detail::get_array(x);
-  PyObject * yarray = detail::get_array(y);
-
-  PyObject * kwargs = PyDict_New();
-
-  PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str()));
-  PyDict_SetItemString(kwargs, "ls", PyString_FromString(ls.c_str()));
-  PyDict_SetItemString(kwargs, "lw", PyFloat_FromDouble(lw));
-
-  for (std::map<std::string, std::string>::const_iterator it =
-         keywords.begin();
-       it != keywords.end();
-       ++it) {
-    PyDict_SetItemString(
-      kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-  }
-
-  PyObject * plot_args = PyTuple_New(2);
-  PyTuple_SetItem(plot_args, 0, xarray);
-  PyTuple_SetItem(plot_args, 1, yarray);
-
-  PyObject * res = PyObject_Call(
-    detail::_interpreter::get().s_python_function_bar, plot_args, kwargs);
-
-  Py_DECREF(plot_args);
-  Py_DECREF(kwargs);
-  if (res) Py_DECREF(res);
-
-  return res;
-}
-
-template <typename Numeric>
-bool bar(const std::vector<Numeric> &               y,
-         std::string                                ec       = "black",
-         std::string                                ls       = "-",
-         double                                     lw       = 1.0,
-         const std::map<std::string, std::string> & keywords = {})
-{
-  using T = typename std::remove_reference<decltype(y)>::type::value_type;
-
-  detail::_interpreter::get();
-
-  std::vector<T> x;
-  for (std::size_t i = 0; i < y.size(); i++) { x.push_back(i); }
-
-  return bar(x, y, ec, ls, lw, keywords);
-}
-
-
-template<typename Numeric>
-bool barh(const std::vector<Numeric> &x, const std::vector<Numeric> &y, std::string ec = "black", std::string ls = "-", double lw = 1.0, const std::map<std::string, std::string> &keywords = { }) {
-    PyObject *xarray = detail::get_array(x);
-    PyObject *yarray = detail::get_array(y);
-
-    PyObject *kwargs = PyDict_New();
-
-    PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str()));
-    PyDict_SetItemString(kwargs, "ls", PyString_FromString(ls.c_str()));
-    PyDict_SetItemString(kwargs, "lw", PyFloat_FromDouble(lw));
-
-    for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject *plot_args = PyTuple_New(2);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-
-    PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_barh, plot_args, kwargs);
-
-    Py_DECREF(plot_args);
-    Py_DECREF(kwargs);
-    if (res) Py_DECREF(res);
-
-    return res;
-}
-
-
-inline bool subplots_adjust(const std::map<std::string, double>& keywords = {})
-{
-    detail::_interpreter::get();
-
-    PyObject* kwargs = PyDict_New();
-    for (std::map<std::string, double>::const_iterator it =
-            keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(),
-                             PyFloat_FromDouble(it->second));
-    }
-
-
-    PyObject* plot_args = PyTuple_New(0);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_subplots_adjust, plot_args, kwargs);
-
-    Py_DECREF(plot_args);
-    Py_DECREF(kwargs);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template< typename Numeric>
-bool named_hist(std::string label,const std::vector<Numeric>& y, long bins=10, std::string color="b", double alpha=1.0)
-{
-    detail::_interpreter::get();
-
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "label", PyString_FromString(label.c_str()));
-    PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins));
-    PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str()));
-    PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha));
-
-
-    PyObject* plot_args = PyTuple_New(1);
-    PyTuple_SetItem(plot_args, 0, yarray);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs);
-
-    Py_DECREF(plot_args);
-    Py_DECREF(kwargs);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool plot(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "")
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(s.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args);
-
-    Py_DECREF(plot_args);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template <typename NumericX, typename NumericY, typename NumericZ>
-bool contour(const std::vector<NumericX>& x, const std::vector<NumericY>& y,
-             const std::vector<NumericZ>& z,
-             const std::map<std::string, std::string>& keywords = {}) {
-    assert(x.size() == y.size() && x.size() == z.size());
-
-    PyObject* xarray = get_array(x);
-    PyObject* yarray = get_array(y);
-    PyObject* zarray = get_array(z);
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, zarray);
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
-         it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res =
-            PyObject_Call(detail::_interpreter::get().s_python_function_contour, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-    if (res)
-        Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY, typename NumericU, typename NumericW>
-bool quiver(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::vector<NumericU>& u, const std::vector<NumericW>& w, const std::map<std::string, std::string>& keywords = {})
-{
-    assert(x.size() == y.size() && x.size() == u.size() && u.size() == w.size());
-
-    detail::_interpreter::get();
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-    PyObject* uarray = detail::get_array(u);
-    PyObject* warray = detail::get_array(w);
-
-    PyObject* plot_args = PyTuple_New(4);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, uarray);
-    PyTuple_SetItem(plot_args, 3, warray);
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(
-            detail::_interpreter::get().s_python_function_quiver, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-    if (res)
-        Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool stem(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "")
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(s.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_CallObject(
-            detail::_interpreter::get().s_python_function_stem, plot_args);
-
-    Py_DECREF(plot_args);
-    if (res)
-        Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool semilogx(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "")
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(s.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_semilogx, plot_args);
-
-    Py_DECREF(plot_args);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool semilogy(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "")
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(s.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_semilogy, plot_args);
-
-    Py_DECREF(plot_args);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool loglog(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "")
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(s.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_loglog, plot_args);
-
-    Py_DECREF(plot_args);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool errorbar(const std::vector<NumericX> &x, const std::vector<NumericY> &y, const std::vector<NumericX> &yerr, const std::map<std::string, std::string> &keywords = {})
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-    PyObject* yerrarray = detail::get_array(yerr);
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-    }
-
-    PyDict_SetItemString(kwargs, "yerr", yerrarray);
-
-    PyObject *plot_args = PyTuple_New(2);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-
-    PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_errorbar, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-
-    if (res)
-        Py_DECREF(res);
-    else
-        throw std::runtime_error("Call to errorbar() failed.");
-
-    return res;
-}
-
-template<typename Numeric>
-bool named_plot(const std::string& name, const std::vector<Numeric>& y, const std::string& format = "")
-{
-    detail::_interpreter::get();
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
-
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(format.c_str());
-
-    PyObject* plot_args = PyTuple_New(2);
-
-    PyTuple_SetItem(plot_args, 0, yarray);
-    PyTuple_SetItem(plot_args, 1, pystring);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-    if (res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename Numeric>
-bool named_plot(const std::string& name, const std::vector<Numeric>& x, const std::vector<Numeric>& y, const std::string& format = "")
-{
-    detail::_interpreter::get();
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(format.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-    if (res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename Numeric>
-bool named_semilogx(const std::string& name, const std::vector<Numeric>& x, const std::vector<Numeric>& y, const std::string& format = "")
-{
-    detail::_interpreter::get();
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(format.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_semilogx, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-    if (res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename Numeric>
-bool named_semilogy(const std::string& name, const std::vector<Numeric>& x, const std::vector<Numeric>& y, const std::string& format = "")
-{
-    detail::_interpreter::get();
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(format.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_semilogy, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-    if (res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename Numeric>
-bool named_loglog(const std::string& name, const std::vector<Numeric>& x, const std::vector<Numeric>& y, const std::string& format = "")
-{
-    detail::_interpreter::get();
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(format.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_loglog, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-    if (res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename Numeric>
-bool plot(const std::vector<Numeric>& y, const std::string& format = "")
-{
-    std::vector<Numeric> x(y.size());
-    for(size_t i=0; i<x.size(); ++i) x.at(i) = i;
-    return plot(x,y,format);
-}
-
-template<typename Numeric>
-bool plot(const std::vector<Numeric>& y, const std::map<std::string, std::string>& keywords)
-{
-    std::vector<Numeric> x(y.size());
-    for(size_t i=0; i<x.size(); ++i) x.at(i) = i;
-    return plot(x,y,keywords);
-}
-
-template<typename Numeric>
-bool stem(const std::vector<Numeric>& y, const std::string& format = "")
-{
-    std::vector<Numeric> x(y.size());
-    for (size_t i = 0; i < x.size(); ++i) x.at(i) = i;
-    return stem(x, y, format);
-}
-
-template<typename Numeric>
-void text(Numeric x, Numeric y, const std::string& s = "")
-{
-    detail::_interpreter::get();
-
-    PyObject* args = PyTuple_New(3);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(x));
-    PyTuple_SetItem(args, 1, PyFloat_FromDouble(y));
-    PyTuple_SetItem(args, 2, PyString_FromString(s.c_str()));
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_text, args);
-    if(!res) throw std::runtime_error("Call to text() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-inline void colorbar(PyObject* mappable = NULL, const std::map<std::string, float>& keywords = {})
-{
-    if (mappable == NULL)
-        throw std::runtime_error("Must call colorbar with PyObject* returned from an image, contour, surface, etc.");
-
-    detail::_interpreter::get();
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, mappable);
-
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, float>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyFloat_FromDouble(it->second));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_colorbar, args, kwargs);
-    if(!res) throw std::runtime_error("Call to colorbar() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    Py_DECREF(res);
-}
-
-
-inline long figure(long number = -1)
-{
-    detail::_interpreter::get();
-
-    PyObject *res;
-    if (number == -1)
-        res = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, detail::_interpreter::get().s_python_empty_tuple);
-    else {
-        assert(number > 0);
-
-        // Make sure interpreter is initialised
-        detail::_interpreter::get();
-
-        PyObject *args = PyTuple_New(1);
-        PyTuple_SetItem(args, 0, PyLong_FromLong(number));
-        res = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, args);
-        Py_DECREF(args);
-    }
-
-    if(!res) throw std::runtime_error("Call to figure() failed.");
-
-    PyObject* num = PyObject_GetAttrString(res, "number");
-    if (!num) throw std::runtime_error("Could not get number attribute of figure object");
-    const long figureNumber = PyLong_AsLong(num);
-
-    Py_DECREF(num);
-    Py_DECREF(res);
-
-    return figureNumber;
-}
-
-inline bool fignum_exists(long number)
-{
-    detail::_interpreter::get();
-
-    PyObject *args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, PyLong_FromLong(number));
-    PyObject *res = PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, args);
-    if(!res) throw std::runtime_error("Call to fignum_exists() failed.");
-
-    bool ret = PyObject_IsTrue(res);
-    Py_DECREF(res);
-    Py_DECREF(args);
-
-    return ret;
-}
-
-inline void figure_size(size_t w, size_t h)
-{
-    detail::_interpreter::get();
-
-    const size_t dpi = 100;
-    PyObject* size = PyTuple_New(2);
-    PyTuple_SetItem(size, 0, PyFloat_FromDouble((double)w / dpi));
-    PyTuple_SetItem(size, 1, PyFloat_FromDouble((double)h / dpi));
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "figsize", size);
-    PyDict_SetItemString(kwargs, "dpi", PyLong_FromSize_t(dpi));
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_figure,
-            detail::_interpreter::get().s_python_empty_tuple, kwargs);
-
-    Py_DECREF(kwargs);
-
-    if(!res) throw std::runtime_error("Call to figure_size() failed.");
-    Py_DECREF(res);
-}
-
-inline void legend()
-{
-    detail::_interpreter::get();
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_legend, detail::_interpreter::get().s_python_empty_tuple);
-    if(!res) throw std::runtime_error("Call to legend() failed.");
-
-    Py_DECREF(res);
-}
-
-inline void legend(const std::map<std::string, std::string>& keywords)
-{
-  detail::_interpreter::get();
-
-  // construct keyword args
-  PyObject* kwargs = PyDict_New();
-  for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-  {
-    PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-  }
-
-  PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_legend, detail::_interpreter::get().s_python_empty_tuple, kwargs);
-  if(!res) throw std::runtime_error("Call to legend() failed.");
-
-  Py_DECREF(kwargs);
-  Py_DECREF(res);  
-}
-
-template<typename Numeric>
-void ylim(Numeric left, Numeric right)
-{
-    detail::_interpreter::get();
-
-    PyObject* list = PyList_New(2);
-    PyList_SetItem(list, 0, PyFloat_FromDouble(left));
-    PyList_SetItem(list, 1, PyFloat_FromDouble(right));
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, list);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args);
-    if(!res) throw std::runtime_error("Call to ylim() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-template<typename Numeric>
-void xlim(Numeric left, Numeric right)
-{
-    detail::_interpreter::get();
-
-    PyObject* list = PyList_New(2);
-    PyList_SetItem(list, 0, PyFloat_FromDouble(left));
-    PyList_SetItem(list, 1, PyFloat_FromDouble(right));
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, list);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args);
-    if(!res) throw std::runtime_error("Call to xlim() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-
-inline double* xlim()
-{
-    detail::_interpreter::get();
-
-    PyObject* args = PyTuple_New(0);
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args);
-    PyObject* left = PyTuple_GetItem(res,0);
-    PyObject* right = PyTuple_GetItem(res,1);
-
-    double* arr = new double[2];
-    arr[0] = PyFloat_AsDouble(left);
-    arr[1] = PyFloat_AsDouble(right);
-
-    if(!res) throw std::runtime_error("Call to xlim() failed.");
-
-    Py_DECREF(res);
-    return arr;
-}
-
-
-inline double* ylim()
-{
-    detail::_interpreter::get();
-
-    PyObject* args = PyTuple_New(0);
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args);
-    PyObject* left = PyTuple_GetItem(res,0);
-    PyObject* right = PyTuple_GetItem(res,1);
-
-    double* arr = new double[2];
-    arr[0] = PyFloat_AsDouble(left);
-    arr[1] = PyFloat_AsDouble(right);
-
-    if(!res) throw std::runtime_error("Call to ylim() failed.");
-
-    Py_DECREF(res);
-    return arr;
-}
-
-template<typename Numeric>
-inline void xticks(const std::vector<Numeric> &ticks, const std::vector<std::string> &labels = {}, const std::map<std::string, std::string>& keywords = {})
-{
-    assert(labels.size() == 0 || ticks.size() == labels.size());
-
-    detail::_interpreter::get();
-
-    // using numpy array
-    PyObject* ticksarray = detail::get_array(ticks);
-
-    PyObject* args;
-    if(labels.size() == 0) {
-        // construct positional args
-        args = PyTuple_New(1);
-        PyTuple_SetItem(args, 0, ticksarray);
-    } else {
-        // make tuple of tick labels
-        PyObject* labelstuple = PyTuple_New(labels.size());
-        for (size_t i = 0; i < labels.size(); i++)
-            PyTuple_SetItem(labelstuple, i, PyUnicode_FromString(labels[i].c_str()));
-
-        // construct positional args
-        args = PyTuple_New(2);
-        PyTuple_SetItem(args, 0, ticksarray);
-        PyTuple_SetItem(args, 1, labelstuple);
-    }
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_xticks, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    if(!res) throw std::runtime_error("Call to xticks() failed");
-
-    Py_DECREF(res);
-}
-
-template<typename Numeric>
-inline void xticks(const std::vector<Numeric> &ticks, const std::map<std::string, std::string>& keywords)
-{
-    xticks(ticks, {}, keywords);
-}
-
-template<typename Numeric>
-inline void yticks(const std::vector<Numeric> &ticks, const std::vector<std::string> &labels = {}, const std::map<std::string, std::string>& keywords = {})
-{
-    assert(labels.size() == 0 || ticks.size() == labels.size());
-
-    detail::_interpreter::get();
-
-    // using numpy array
-    PyObject* ticksarray = detail::get_array(ticks);
-
-    PyObject* args;
-    if(labels.size() == 0) {
-        // construct positional args
-        args = PyTuple_New(1);
-        PyTuple_SetItem(args, 0, ticksarray);
-    } else {
-        // make tuple of tick labels
-        PyObject* labelstuple = PyTuple_New(labels.size());
-        for (size_t i = 0; i < labels.size(); i++)
-            PyTuple_SetItem(labelstuple, i, PyUnicode_FromString(labels[i].c_str()));
-
-        // construct positional args
-        args = PyTuple_New(2);
-        PyTuple_SetItem(args, 0, ticksarray);
-        PyTuple_SetItem(args, 1, labelstuple);
-    }
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_yticks, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    if(!res) throw std::runtime_error("Call to yticks() failed");
-
-    Py_DECREF(res);
-}
-
-template<typename Numeric>
-inline void yticks(const std::vector<Numeric> &ticks, const std::map<std::string, std::string>& keywords)
-{
-    yticks(ticks, {}, keywords);
-}
-
-template <typename Numeric> inline void margins(Numeric margin)
-{
-    // construct positional args
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(margin));
-
-    PyObject* res =
-            PyObject_CallObject(detail::_interpreter::get().s_python_function_margins, args);
-    if (!res)
-        throw std::runtime_error("Call to margins() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-template <typename Numeric> inline void margins(Numeric margin_x, Numeric margin_y)
-{
-    // construct positional args
-    PyObject* args = PyTuple_New(2);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(margin_x));
-    PyTuple_SetItem(args, 1, PyFloat_FromDouble(margin_y));
-
-    PyObject* res =
-            PyObject_CallObject(detail::_interpreter::get().s_python_function_margins, args);
-    if (!res)
-        throw std::runtime_error("Call to margins() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-
-inline void tick_params(const std::map<std::string, std::string>& keywords, const std::string axis = "both")
-{
-  detail::_interpreter::get();
-
-  // construct positional args
-  PyObject* args;
-  args = PyTuple_New(1);
-  PyTuple_SetItem(args, 0, PyString_FromString(axis.c_str()));
-
-  // construct keyword args
-  PyObject* kwargs = PyDict_New();
-  for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-  {
-    PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-  }
-
-
-  PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_tick_params, args, kwargs);
-
-  Py_DECREF(args);
-  Py_DECREF(kwargs);
-  if (!res) throw std::runtime_error("Call to tick_params() failed");
-
-  Py_DECREF(res);
-}
-
-inline void subplot(long nrows, long ncols, long plot_number)
-{
-    detail::_interpreter::get();
-    
-    // construct positional args
-    PyObject* args = PyTuple_New(3);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(nrows));
-    PyTuple_SetItem(args, 1, PyFloat_FromDouble(ncols));
-    PyTuple_SetItem(args, 2, PyFloat_FromDouble(plot_number));
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_subplot, args);
-    if(!res) throw std::runtime_error("Call to subplot() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-inline void subplot2grid(long nrows, long ncols, long rowid=0, long colid=0, long rowspan=1, long colspan=1)
-{
-    detail::_interpreter::get();
-
-    PyObject* shape = PyTuple_New(2);
-    PyTuple_SetItem(shape, 0, PyLong_FromLong(nrows));
-    PyTuple_SetItem(shape, 1, PyLong_FromLong(ncols));
-
-    PyObject* loc = PyTuple_New(2);
-    PyTuple_SetItem(loc, 0, PyLong_FromLong(rowid));
-    PyTuple_SetItem(loc, 1, PyLong_FromLong(colid));
-
-    PyObject* args = PyTuple_New(4);
-    PyTuple_SetItem(args, 0, shape);
-    PyTuple_SetItem(args, 1, loc);
-    PyTuple_SetItem(args, 2, PyLong_FromLong(rowspan));
-    PyTuple_SetItem(args, 3, PyLong_FromLong(colspan));
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_subplot2grid, args);
-    if(!res) throw std::runtime_error("Call to subplot2grid() failed.");
-
-    Py_DECREF(shape);
-    Py_DECREF(loc);
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-inline void title(const std::string &titlestr, const std::map<std::string, std::string> &keywords = {})
-{
-    detail::_interpreter::get();
-
-    PyObject* pytitlestr = PyString_FromString(titlestr.c_str());
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, pytitlestr);
-
-    PyObject* kwargs = PyDict_New();
-    for (auto it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_title, args, kwargs);
-    if(!res) throw std::runtime_error("Call to title() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    Py_DECREF(res);
-}
-
-inline void suptitle(const std::string &suptitlestr, const std::map<std::string, std::string> &keywords = {})
-{
-    detail::_interpreter::get();
-    
-    PyObject* pysuptitlestr = PyString_FromString(suptitlestr.c_str());
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, pysuptitlestr);
-
-    PyObject* kwargs = PyDict_New();
-    for (auto it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_suptitle, args, kwargs);
-    if(!res) throw std::runtime_error("Call to suptitle() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    Py_DECREF(res);
-}
-
-inline void axis(const std::string &axisstr)
-{
-    detail::_interpreter::get();
-
-    PyObject* str = PyString_FromString(axisstr.c_str());
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, str);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_axis, args);
-    if(!res) throw std::runtime_error("Call to title() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-inline void axvline(double x, double ymin = 0., double ymax = 1., const std::map<std::string, std::string>& keywords = std::map<std::string, std::string>())
-{
-    detail::_interpreter::get();
-
-    // construct positional args
-    PyObject* args = PyTuple_New(3);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(x));
-    PyTuple_SetItem(args, 1, PyFloat_FromDouble(ymin));
-    PyTuple_SetItem(args, 2, PyFloat_FromDouble(ymax));
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axvline, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-
-    if(res) Py_DECREF(res);
-}
-
-inline void axvspan(double xmin, double xmax, double ymin = 0., double ymax = 1., const std::map<std::string, std::string>& keywords = std::map<std::string, std::string>())
-{
-    // construct positional args
-    PyObject* args = PyTuple_New(4);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(xmin));
-    PyTuple_SetItem(args, 1, PyFloat_FromDouble(xmax));
-    PyTuple_SetItem(args, 2, PyFloat_FromDouble(ymin));
-    PyTuple_SetItem(args, 3, PyFloat_FromDouble(ymax));
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-    if (it->first == "linewidth" || it->first == "alpha")
-            PyDict_SetItemString(kwargs, it->first.c_str(), PyFloat_FromDouble(std::stod(it->second)));
-    else
-            PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axvspan, args, kwargs);
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-
-    if(res) Py_DECREF(res);
-}
-
-inline void xlabel(const std::string &str, const std::map<std::string, std::string> &keywords = {})
-{
-    detail::_interpreter::get();
-
-    PyObject* pystr = PyString_FromString(str.c_str());
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, pystr);
-
-    PyObject* kwargs = PyDict_New();
-    for (auto it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_xlabel, args, kwargs);
-    if(!res) throw std::runtime_error("Call to xlabel() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    Py_DECREF(res);
-}
-
-inline void ylabel(const std::string &str, const std::map<std::string, std::string>& keywords = {})
-{
-    detail::_interpreter::get();
-
-    PyObject* pystr = PyString_FromString(str.c_str());
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, pystr);
-
-    PyObject* kwargs = PyDict_New();
-    for (auto it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_ylabel, args, kwargs);
-    if(!res) throw std::runtime_error("Call to ylabel() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    Py_DECREF(res);
-}
-
-inline void set_zlabel(const std::string &str, const std::map<std::string, std::string>& keywords = {})
-{
-    detail::_interpreter::get();
-
-    // Same as with plot_surface: We lazily load the modules here the first time 
-    // this function is called because I'm not sure that we can assume "matplotlib 
-    // installed" implies "mpl_toolkits installed" on all platforms, and we don't 
-    // want to require it for people who don't need 3d plots.
-    static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr;
-    if (!mpl_toolkitsmod) {
-        PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits");
-        PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d");
-        if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); }
-
-        mpl_toolkitsmod = PyImport_Import(mpl_toolkits);
-        Py_DECREF(mpl_toolkits);
-        if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); }
-
-        axis3dmod = PyImport_Import(axis3d);
-        Py_DECREF(axis3d);
-        if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); }
-    }
-
-    PyObject* pystr = PyString_FromString(str.c_str());
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, pystr);
-
-    PyObject* kwargs = PyDict_New();
-    for (auto it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject *ax =
-    PyObject_CallObject(detail::_interpreter::get().s_python_function_gca,
-      detail::_interpreter::get().s_python_empty_tuple);
-    if (!ax) throw std::runtime_error("Call to gca() failed.");
-    Py_INCREF(ax);
-
-    PyObject *zlabel = PyObject_GetAttrString(ax, "set_zlabel");
-    if (!zlabel) throw std::runtime_error("Attribute set_zlabel not found.");
-    Py_INCREF(zlabel);
-
-    PyObject *res = PyObject_Call(zlabel, args, kwargs);
-    if (!res) throw std::runtime_error("Call to set_zlabel() failed.");
-    Py_DECREF(zlabel);
-
-    Py_DECREF(ax);
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    if (res) Py_DECREF(res);
-}
-
-inline void grid(bool flag)
-{
-    detail::_interpreter::get();
-
-    PyObject* pyflag = flag ? Py_True : Py_False;
-    Py_INCREF(pyflag);
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, pyflag);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_grid, args);
-    if(!res) throw std::runtime_error("Call to grid() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-inline void show(const bool block = true)
-{
-    detail::_interpreter::get();
-
-    PyObject* res;
-    if(block)
-    {
-        res = PyObject_CallObject(
-                detail::_interpreter::get().s_python_function_show,
-                detail::_interpreter::get().s_python_empty_tuple);
-    }
-    else
-    {
-        PyObject *kwargs = PyDict_New();
-        PyDict_SetItemString(kwargs, "block", Py_False);
-        res = PyObject_Call( detail::_interpreter::get().s_python_function_show, detail::_interpreter::get().s_python_empty_tuple, kwargs);
-       Py_DECREF(kwargs);
-    }
-
-
-    if (!res) throw std::runtime_error("Call to show() failed.");
-
-    Py_DECREF(res);
-}
-
-inline void close()
-{
-    detail::_interpreter::get();
-
-    PyObject* res = PyObject_CallObject(
-            detail::_interpreter::get().s_python_function_close,
-            detail::_interpreter::get().s_python_empty_tuple);
-
-    if (!res) throw std::runtime_error("Call to close() failed.");
-
-    Py_DECREF(res);
-}
-
-inline void xkcd() {
-    detail::_interpreter::get();
-
-    PyObject* res;
-    PyObject *kwargs = PyDict_New();
-
-    res = PyObject_Call(detail::_interpreter::get().s_python_function_xkcd,
-            detail::_interpreter::get().s_python_empty_tuple, kwargs);
-
-    Py_DECREF(kwargs);
-
-    if (!res)
-        throw std::runtime_error("Call to show() failed.");
-
-    Py_DECREF(res);
-}
-
-inline void draw()
-{
-    detail::_interpreter::get();
-
-    PyObject* res = PyObject_CallObject(
-        detail::_interpreter::get().s_python_function_draw,
-        detail::_interpreter::get().s_python_empty_tuple);
-
-    if (!res) throw std::runtime_error("Call to draw() failed.");
-
-    Py_DECREF(res);
-}
-
-template<typename Numeric>
-inline void pause(Numeric interval)
-{
-    detail::_interpreter::get();
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(interval));
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_pause, args);
-    if(!res) throw std::runtime_error("Call to pause() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-inline void save(const std::string& filename)
-{
-    detail::_interpreter::get();
-
-    PyObject* pyfilename = PyString_FromString(filename.c_str());
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, pyfilename);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_save, args);
-    if (!res) throw std::runtime_error("Call to save() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-inline void clf() {
-    detail::_interpreter::get();
-
-    PyObject *res = PyObject_CallObject(
-        detail::_interpreter::get().s_python_function_clf,
-        detail::_interpreter::get().s_python_empty_tuple);
-
-    if (!res) throw std::runtime_error("Call to clf() failed.");
-
-    Py_DECREF(res);
-}
-
-inline void cla() {
-    detail::_interpreter::get();
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_cla,
-                                        detail::_interpreter::get().s_python_empty_tuple);
-
-    if (!res)
-        throw std::runtime_error("Call to cla() failed.");
-
-    Py_DECREF(res);
-}
-
-inline void ion() {
-    detail::_interpreter::get();
-
-    PyObject *res = PyObject_CallObject(
-        detail::_interpreter::get().s_python_function_ion,
-        detail::_interpreter::get().s_python_empty_tuple);
-
-    if (!res) throw std::runtime_error("Call to ion() failed.");
-
-    Py_DECREF(res);
-}
-
-inline std::vector<std::array<double, 2>> ginput(const int numClicks = 1, const std::map<std::string, std::string>& keywords = {})
-{
-    detail::_interpreter::get();
-
-    PyObject *args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, PyLong_FromLong(numClicks));
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(
-        detail::_interpreter::get().s_python_function_ginput, args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(args);
-    if (!res) throw std::runtime_error("Call to ginput() failed.");
-
-    const size_t len = PyList_Size(res);
-    std::vector<std::array<double, 2>> out;
-    out.reserve(len);
-    for (size_t i = 0; i < len; i++) {
-        PyObject *current = PyList_GetItem(res, i);
-        std::array<double, 2> position;
-        position[0] = PyFloat_AsDouble(PyTuple_GetItem(current, 0));
-        position[1] = PyFloat_AsDouble(PyTuple_GetItem(current, 1));
-        out.push_back(position);
-    }
-    Py_DECREF(res);
-
-    return out;
-}
-
-// Actually, is there any reason not to call this automatically for every plot?
-inline void tight_layout() {
-    detail::_interpreter::get();
-
-    PyObject *res = PyObject_CallObject(
-        detail::_interpreter::get().s_python_function_tight_layout,
-        detail::_interpreter::get().s_python_empty_tuple);
-
-    if (!res) throw std::runtime_error("Call to tight_layout() failed.");
-
-    Py_DECREF(res);
-}
-
-// Support for variadic plot() and initializer lists:
-
-namespace detail {
-
-template<typename T>
-using is_function = typename std::is_function<std::remove_pointer<std::remove_reference<T>>>::type;
-
-template<bool obj, typename T>
-struct is_callable_impl;
-
-template<typename T>
-struct is_callable_impl<false, T>
-{
-    typedef is_function<T> type;
-}; // a non-object is callable iff it is a function
-
-template<typename T>
-struct is_callable_impl<true, T>
-{
-    struct Fallback { void operator()(); };
-    struct Derived : T, Fallback { };
-
-    template<typename U, U> struct Check;
-
-    template<typename U>
-    static std::true_type test( ... ); // use a variadic function to make sure (1) it accepts everything and (2) its always the worst match
-
-    template<typename U>
-    static std::false_type test( Check<void(Fallback::*)(), &U::operator()>* );
-
-public:
-    typedef decltype(test<Derived>(nullptr)) type;
-    typedef decltype(&Fallback::operator()) dtype;
-    static constexpr bool value = type::value;
-}; // an object is callable iff it defines operator()
-
-template<typename T>
-struct is_callable
-{
-    // dispatch to is_callable_impl<true, T> or is_callable_impl<false, T> depending on whether T is of class type or not
-    typedef typename is_callable_impl<std::is_class<T>::value, T>::type type;
-};
-
-template<typename IsYDataCallable>
-struct plot_impl { };
-
-template<>
-struct plot_impl<std::false_type>
-{
-    template<typename IterableX, typename IterableY>
-    bool operator()(const IterableX& x, const IterableY& y, const std::string& format)
-    {
-        detail::_interpreter::get();
-
-        // 2-phase lookup for distance, begin, end
-        using std::distance;
-        using std::begin;
-        using std::end;
-
-        auto xs = distance(begin(x), end(x));
-        auto ys = distance(begin(y), end(y));
-        assert(xs == ys && "x and y data must have the same number of elements!");
-
-        PyObject* xlist = PyList_New(xs);
-        PyObject* ylist = PyList_New(ys);
-        PyObject* pystring = PyString_FromString(format.c_str());
-
-        auto itx = begin(x), ity = begin(y);
-        for(size_t i = 0; i < xs; ++i) {
-            PyList_SetItem(xlist, i, PyFloat_FromDouble(*itx++));
-            PyList_SetItem(ylist, i, PyFloat_FromDouble(*ity++));
-        }
-
-        PyObject* plot_args = PyTuple_New(3);
-        PyTuple_SetItem(plot_args, 0, xlist);
-        PyTuple_SetItem(plot_args, 1, ylist);
-        PyTuple_SetItem(plot_args, 2, pystring);
-
-        PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args);
-
-        Py_DECREF(plot_args);
-        if(res) Py_DECREF(res);
-
-        return res;
-    }
-};
-
-template<>
-struct plot_impl<std::true_type>
-{
-    template<typename Iterable, typename Callable>
-    bool operator()(const Iterable& ticks, const Callable& f, const std::string& format)
-    {
-        if(begin(ticks) == end(ticks)) return true;
-
-        // We could use additional meta-programming to deduce the correct element type of y,
-        // but all values have to be convertible to double anyways
-        std::vector<double> y;
-        for(auto x : ticks) y.push_back(f(x));
-        return plot_impl<std::false_type>()(ticks,y,format);
-    }
-};
-
-} // end namespace detail
-
-// recursion stop for the above
-template<typename... Args>
-bool plot() { return true; }
-
-template<typename A, typename B, typename... Args>
-bool plot(const A& a, const B& b, const std::string& format, Args... args)
-{
-    return detail::plot_impl<typename detail::is_callable<B>::type>()(a,b,format) && plot(args...);
-}
-
-/*
- * This group of plot() functions is needed to support initializer lists, i.e. calling
- *    plot( {1,2,3,4} )
- */
-inline bool plot(const std::vector<double>& x, const std::vector<double>& y, const std::string& format = "") {
-    return plot<double,double>(x,y,format);
-}
-
-inline bool plot(const std::vector<double>& y, const std::string& format = "") {
-    return plot<double>(y,format);
-}
-
-inline bool plot(const std::vector<double>& x, const std::vector<double>& y, const std::map<std::string, std::string>& keywords) {
-    return plot<double>(x,y,keywords);
-}
-
-/*
- * This class allows dynamic plots, ie changing the plotted data without clearing and re-plotting
- */
-class Plot
-{
-public:
-    // default initialization with plot label, some data and format
-    template<typename Numeric>
-    Plot(const std::string& name, const std::vector<Numeric>& x, const std::vector<Numeric>& y, const std::string& format = "") {
-        detail::_interpreter::get();
-
-        assert(x.size() == y.size());
-
-        PyObject* kwargs = PyDict_New();
-        if(name != "")
-            PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
-
-        PyObject* xarray = detail::get_array(x);
-        PyObject* yarray = detail::get_array(y);
-
-        PyObject* pystring = PyString_FromString(format.c_str());
-
-        PyObject* plot_args = PyTuple_New(3);
-        PyTuple_SetItem(plot_args, 0, xarray);
-        PyTuple_SetItem(plot_args, 1, yarray);
-        PyTuple_SetItem(plot_args, 2, pystring);
-
-        PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs);
-
-        Py_DECREF(kwargs);
-        Py_DECREF(plot_args);
-
-        if(res)
-        {
-            line= PyList_GetItem(res, 0);
-
-            if(line)
-                set_data_fct = PyObject_GetAttrString(line,"set_data");
-            else
-                Py_DECREF(line);
-            Py_DECREF(res);
-        }
-    }
-
-    // shorter initialization with name or format only
-    // basically calls line, = plot([], [])
-    Plot(const std::string& name = "", const std::string& format = "")
-        : Plot(name, std::vector<double>(), std::vector<double>(), format) {}
-
-    template<typename Numeric>
-    bool update(const std::vector<Numeric>& x, const std::vector<Numeric>& y) {
-        assert(x.size() == y.size());
-        if(set_data_fct)
-        {
-            PyObject* xarray = detail::get_array(x);
-            PyObject* yarray = detail::get_array(y);
-
-            PyObject* plot_args = PyTuple_New(2);
-            PyTuple_SetItem(plot_args, 0, xarray);
-            PyTuple_SetItem(plot_args, 1, yarray);
-
-            PyObject* res = PyObject_CallObject(set_data_fct, plot_args);
-            if (res) Py_DECREF(res);
-            return res;
-        }
-        return false;
-    }
-
-    // clears the plot but keep it available
-    bool clear() {
-        return update(std::vector<double>(), std::vector<double>());
-    }
-
-    // definitely remove this line
-    void remove() {
-        if(line)
-        {
-            auto remove_fct = PyObject_GetAttrString(line,"remove");
-            PyObject* args = PyTuple_New(0);
-            PyObject* res = PyObject_CallObject(remove_fct, args);
-            if (res) Py_DECREF(res);
-        }
-        decref();
-    }
-
-    ~Plot() {
-        decref();
-    }
-private:
-
-    void decref() {
-        if(line)
-            Py_DECREF(line);
-        if(set_data_fct)
-            Py_DECREF(set_data_fct);
-    }
-
-
-    PyObject* line = nullptr;
-    PyObject* set_data_fct = nullptr;
-};
-
-} // end namespace matplotlibcpp
-- 
GitLab