From a114aebe1b14dc9b123a8e570e8b4c04529743dd Mon Sep 17 00:00:00 2001 From: joanvallve <jvallve@iri.upc.edu> Date: Mon, 10 Jun 2024 13:04:04 +0200 Subject: [PATCH] little work on gtest icp --- test/gtest/CMakeLists.txt | 4 +- test/gtest_icp.cpp | 92 +- test/matplotlibcpp.h | 3007 ------------------------------------- 3 files changed, 8 insertions(+), 3095 deletions(-) delete mode 100644 test/matplotlibcpp.h diff --git a/test/gtest/CMakeLists.txt b/test/gtest/CMakeLists.txt index 3b52f51..68dd3a7 100644 --- a/test/gtest/CMakeLists.txt +++ b/test/gtest/CMakeLists.txt @@ -1,11 +1,13 @@ include(FetchContent) +SET(BUILD_GMOCK OFF) # Disable gmock +SET(INSTALL_GTEST OFF) # Disable installation of googletest + FetchContent_Declare( googletest GIT_REPOSITORY https://github.com/google/googletest.git GIT_TAG main) -SET(INSTALL_GTEST OFF) # Disable installation of googletest FetchContent_MakeAvailable(googletest) function(add_gtest target) diff --git a/test/gtest_icp.cpp b/test/gtest_icp.cpp index e3ec9b4..e398677 100644 --- a/test/gtest_icp.cpp +++ b/test/gtest_icp.cpp @@ -23,12 +23,6 @@ #include "laser_scan_utils/laser_scan.h" #include "laser_scan_utils/icp.h" -#define TEST_PLOTS false -#if TEST_PLOTS -#include "matplotlibcpp.h" -namespace plt = matplotlibcpp; -#endif - using namespace laserscanutils; const Eigen::Vector2d A = Eigen::Vector2d::Zero(); @@ -37,10 +31,8 @@ const Eigen::Vector2d C = (Eigen::Vector2d() << 30, 0).finished(); const Eigen::Vector2d CB = B-C; double AB_ang = atan2((A-B).norm(),(A-C).norm()); double dist_min = 2; -int color_id=0; -const std::vector<std::string> colors({"b","r","g","c","m","y"}); -/* Synthetic scans are created from this simple scenario with three orthogonal walls: +/* Synthetic scans are created from this simple scenario with three vertical walls: * * B * + @@ -151,15 +143,6 @@ LaserScan simulateScan(const Eigen::Vector3d& laser_pose, const LaserScanParams& } } - // // print ranges - // std::cout << "Scan:" << std::endl; - // std::cout << " angle_min: " << params.angle_min_ << std::endl; - // std::cout << " angle_step_: " << params.angle_step_ << std::endl; - // std::cout << " ranges: "; - // for (auto range : scan.ranges_raw_) - // std::cout << range << ", "; - // std::cout << std::endl; - return scan; }; @@ -172,19 +155,14 @@ void generateRandomProblem(Eigen::Vector3d& pose_ref, double perturbation = 1) { pose_ref = generateRandomPoseInsideTriangle(); - pose_d = Eigen::Vector3d::Random() * perturbation; - while (pose_d(2) > M_PI) - pose_d(2) -= 2*M_PI; - while (pose_d(2) <= -M_PI) - pose_d(2) += 2*M_PI; - pose_tar.head<2>() = pose_ref.head<2>() + Eigen::Rotation2Dd(pose_ref(2)) * pose_d.head<2>(); - pose_tar(2) = pose_ref(2) + pose_d(2); - while (not insideTriangle(pose_tar)) + do { - pose_d = Eigen::Vector3d::Random(); + pose_d = Eigen::Vector3d::Random() * perturbation; + pose_d(2) = pi2pi(pose_d(2)); pose_tar.head<2>() = pose_ref.head<2>() + Eigen::Rotation2Dd(pose_ref(2)) * pose_d.head<2>(); pose_tar(2) = pose_ref(2) + pose_d(2); } + while (not insideTriangle(pose_tar)); scan_ref = simulateScan(pose_ref, scan_params); scan_tar = simulateScan(pose_tar, scan_params); @@ -204,53 +182,9 @@ LaserScanParams generateLaserScanParams(double angle_min_deg, double angle_step_ scan_params.range_std_dev_ = 0; scan_params.angle_std_dev_ = 0; - //scan_params.print(); return scan_params; } -void initPlot() -{ -#if TEST_PLOTS - plt::figure(); -#endif -} - -void showPlot() -{ -#if TEST_PLOTS - plt::show(); -#endif -} - -void plotScan(const LaserScan& scan, const LaserScanParams& scan_params, const Eigen::Vector3d pose, bool fig_created = false) -{ -#if TEST_PLOTS - // Create figure - if (not fig_created) - plt::figure(); - plt::axis("scaled"); - - std::vector<double> x(scan.ranges_raw_.size()); - std::vector<double> y(scan.ranges_raw_.size()); - for (auto i = 0; i < scan.ranges_raw_.size(); i++) - { - x.at(i) = pose(0) + cos(scan_params.angle_min_ + i*scan_params.angle_step_ + pose(2)) * scan.ranges_raw_.at(i); - y.at(i) = pose(1) + sin(scan_params.angle_min_ + i*scan_params.angle_step_ + pose(2)) * scan.ranges_raw_.at(i); - } - plt::plot(x, y,"."+colors.at(color_id)); - - std::vector<double> pose_x{pose(0)-sin(pose(2)), pose(0), pose(0)+cos(pose(2))}; - std::vector<double> pose_y{pose(1)+cos(pose(2)), pose(1), pose(1)+sin(pose(2))}; - plt::plot(pose_x, pose_y,colors.at(color_id)+"-"); - - if (not fig_created) - plt::show(); - - color_id++; - if (color_id >= colors.size()) - color_id = 0; -#endif -} /////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////// TESTS //////////////////////////////////////////// @@ -310,8 +244,6 @@ TEST(TestIcp, TestGenerateRandomPose) // 0-2M_PI (5 degrees step) LaserScanParams scan_params = generateLaserScanParams(-180,1); - initPlot(); - // 100 random poses and scans for (auto i=0; i < 100; i++) { @@ -319,11 +251,7 @@ TEST(TestIcp, TestGenerateRandomPose) ASSERT_TRUE(insideTriangle(laser_pose)); auto scan = simulateScan(laser_pose, scan_params); - - plotScan(scan, scan_params, laser_pose, true); } - - showPlot(); } TEST(TestIcp, TestIcpSame1) @@ -445,11 +373,6 @@ TEST(TestIcp, TestIcp1) ASSERT_TRUE(icp_output.valid); EXPECT_MATRIX_APPROX(icp_output.res_transf, pose_d, 1e-1); - - initPlot(); - plotScan(scan_ref,scan_params,pose_ref,true); - plotScan(scan_tar,scan_params,pose_tar,true); - showPlot(); } } @@ -482,11 +405,6 @@ TEST(TestIcp, TestIcp10) ASSERT_TRUE(icp_output.valid); EXPECT_MATRIX_APPROX(icp_output.res_transf, pose_d, 1e-1); - - initPlot(); - plotScan(scan_ref,scan_params,pose_ref,true); - plotScan(scan_tar,scan_params,pose_tar,true); - showPlot(); } }//*/ diff --git a/test/matplotlibcpp.h b/test/matplotlibcpp.h deleted file mode 100644 index c1b2d9b..0000000 --- a/test/matplotlibcpp.h +++ /dev/null @@ -1,3007 +0,0 @@ -//--------LICENSE_START-------- -// -// Copyright (C) 2020,2021,2022,2023,2024 Institut de Robòtica i Informà tica Industrial, CSIC-UPC. -// Authors: Joan Vallvé Navarro (jvallve@iri.upc.edu) -// All rights reserved. -// -// This file is part of laser_scan_utils -// laser_scan_utils is free software: you can redistribute it and/or modify -// it under the terms of the GNU Lesser General Public License as published by -// the Free Software Foundation, either version 3 of the License, or -// at your option) any later version. -// -// This program is distributed in the hope that it will be useful, -// but WITHOUT ANY WARRANTY; without even the implied warranty of -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -// GNU Lesser General Public License for more details. -// -// You should have received a copy of the GNU Lesser General Public License -// along with this program. If not, see <http://www.gnu.org/licenses/>. -// -//--------LICENSE_END-------- -#pragma once - -// Python headers must be included before any system headers, since -// they define _POSIX_C_SOURCE -#include <Python.h> - -#include <vector> -#include <map> -#include <array> -#include <numeric> -#include <algorithm> -#include <stdexcept> -#include <iostream> -#include <cstdint> // <cstdint> requires c++11 support -#include <functional> -#include <string> // std::stod - -#ifndef WITHOUT_NUMPY -# define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION -# include <numpy/arrayobject.h> - -# ifdef WITH_OPENCV -# include <opencv2/opencv.hpp> -# endif // WITH_OPENCV - -/* - * A bunch of constants were removed in OpenCV 4 in favour of enum classes, so - * define the ones we need here. - */ -# if CV_MAJOR_VERSION > 3 -# define CV_BGR2RGB cv::COLOR_BGR2RGB -# define CV_BGRA2RGBA cv::COLOR_BGRA2RGBA -# endif -#endif // WITHOUT_NUMPY - -#if PY_MAJOR_VERSION >= 3 -# define PyString_FromString PyUnicode_FromString -# define PyInt_FromLong PyLong_FromLong -# define PyString_FromString PyUnicode_FromString -#endif - - -namespace matplotlibcpp { -namespace detail { - -static std::string s_backend; - -struct _interpreter { - PyObject* s_python_function_arrow; - PyObject *s_python_function_show; - PyObject *s_python_function_close; - PyObject *s_python_function_draw; - PyObject *s_python_function_pause; - PyObject *s_python_function_save; - PyObject *s_python_function_figure; - PyObject *s_python_function_fignum_exists; - PyObject *s_python_function_plot; - PyObject *s_python_function_quiver; - PyObject* s_python_function_contour; - PyObject *s_python_function_semilogx; - PyObject *s_python_function_semilogy; - PyObject *s_python_function_loglog; - PyObject *s_python_function_fill; - PyObject *s_python_function_fill_between; - PyObject *s_python_function_hist; - PyObject *s_python_function_imshow; - PyObject *s_python_function_scatter; - PyObject *s_python_function_boxplot; - PyObject *s_python_function_subplot; - PyObject *s_python_function_subplot2grid; - PyObject *s_python_function_legend; - PyObject *s_python_function_xlim; - PyObject *s_python_function_ion; - PyObject *s_python_function_ginput; - PyObject *s_python_function_ylim; - PyObject *s_python_function_title; - PyObject *s_python_function_axis; - PyObject *s_python_function_axhline; - PyObject *s_python_function_axvline; - PyObject *s_python_function_axvspan; - PyObject *s_python_function_xlabel; - PyObject *s_python_function_ylabel; - PyObject *s_python_function_gca; - PyObject *s_python_function_xticks; - PyObject *s_python_function_yticks; - PyObject* s_python_function_margins; - PyObject *s_python_function_tick_params; - PyObject *s_python_function_grid; - PyObject* s_python_function_cla; - PyObject *s_python_function_clf; - PyObject *s_python_function_errorbar; - PyObject *s_python_function_annotate; - PyObject *s_python_function_tight_layout; - PyObject *s_python_colormap; - PyObject *s_python_empty_tuple; - PyObject *s_python_function_stem; - PyObject *s_python_function_xkcd; - PyObject *s_python_function_text; - PyObject *s_python_function_suptitle; - PyObject *s_python_function_bar; - PyObject *s_python_function_barh; - PyObject *s_python_function_colorbar; - PyObject *s_python_function_subplots_adjust; - PyObject *s_python_function_rcparams; - PyObject *s_python_function_spy; - - /* For now, _interpreter is implemented as a singleton since its currently not possible to have - multiple independent embedded python interpreters without patching the python source code - or starting a separate process for each. [1] - Furthermore, many python objects expect that they are destructed in the same thread as they - were constructed. [2] So for advanced usage, a `kill()` function is provided so that library - users can manually ensure that the interpreter is constructed and destroyed within the - same thread. - - 1: http://bytes.com/topic/python/answers/793370-multiple-independent-python-interpreters-c-c-program - 2: https://github.com/lava/matplotlib-cpp/pull/202#issue-436220256 - */ - - static _interpreter& get() { - return interkeeper(false); - } - - static _interpreter& kill() { - return interkeeper(true); - } - - // Stores the actual singleton object referenced by `get()` and `kill()`. - static _interpreter& interkeeper(bool should_kill) { - static _interpreter ctx; - if (should_kill) - ctx.~_interpreter(); - return ctx; - } - - PyObject* safe_import(PyObject* module, std::string fname) { - PyObject* fn = PyObject_GetAttrString(module, fname.c_str()); - - if (!fn) - throw std::runtime_error(std::string("Couldn't find required function: ") + fname); - - if (!PyFunction_Check(fn)) - throw std::runtime_error(fname + std::string(" is unexpectedly not a PyFunction.")); - - return fn; - } - -private: - -#ifndef WITHOUT_NUMPY -# if PY_MAJOR_VERSION >= 3 - - void *import_numpy() { - import_array(); // initialize C-API - return NULL; - } - -# else - - void import_numpy() { - import_array(); // initialize C-API - } - -# endif -#endif - - _interpreter() { - - // optional but recommended -#if PY_MAJOR_VERSION >= 3 - wchar_t name[] = L"plotting"; -#else - char name[] = "plotting"; -#endif - Py_SetProgramName(name); - Py_Initialize(); - - wchar_t const *dummy_args[] = {L"Python", NULL}; // const is needed because literals must not be modified - wchar_t const **argv = dummy_args; - int argc = sizeof(dummy_args)/sizeof(dummy_args[0])-1; - -#if PY_MAJOR_VERSION >= 3 - PySys_SetArgv(argc, const_cast<wchar_t **>(argv)); -#else - PySys_SetArgv(argc, (char **)(argv)); -#endif - -#ifndef WITHOUT_NUMPY - import_numpy(); // initialize numpy C-API -#endif - - PyObject* matplotlibname = PyString_FromString("matplotlib"); - PyObject* pyplotname = PyString_FromString("matplotlib.pyplot"); - PyObject* cmname = PyString_FromString("matplotlib.cm"); - PyObject* pylabname = PyString_FromString("pylab"); - if (!pyplotname || !pylabname || !matplotlibname || !cmname) { - throw std::runtime_error("couldnt create string"); - } - - PyObject* matplotlib = PyImport_Import(matplotlibname); - - Py_DECREF(matplotlibname); - if (!matplotlib) { - PyErr_Print(); - throw std::runtime_error("Error loading module matplotlib!"); - } - - // matplotlib.use() must be called *before* pylab, matplotlib.pyplot, - // or matplotlib.backends is imported for the first time - if (!s_backend.empty()) { - PyObject_CallMethod(matplotlib, const_cast<char*>("use"), const_cast<char*>("s"), s_backend.c_str()); - } - - - - PyObject* pymod = PyImport_Import(pyplotname); - Py_DECREF(pyplotname); - if (!pymod) { throw std::runtime_error("Error loading module matplotlib.pyplot!"); } - - s_python_colormap = PyImport_Import(cmname); - Py_DECREF(cmname); - if (!s_python_colormap) { throw std::runtime_error("Error loading module matplotlib.cm!"); } - - PyObject* pylabmod = PyImport_Import(pylabname); - Py_DECREF(pylabname); - if (!pylabmod) { throw std::runtime_error("Error loading module pylab!"); } - - s_python_function_arrow = safe_import(pymod, "arrow"); - s_python_function_show = safe_import(pymod, "show"); - s_python_function_close = safe_import(pymod, "close"); - s_python_function_draw = safe_import(pymod, "draw"); - s_python_function_pause = safe_import(pymod, "pause"); - s_python_function_figure = safe_import(pymod, "figure"); - s_python_function_fignum_exists = safe_import(pymod, "fignum_exists"); - s_python_function_plot = safe_import(pymod, "plot"); - s_python_function_quiver = safe_import(pymod, "quiver"); - s_python_function_contour = safe_import(pymod, "contour"); - s_python_function_semilogx = safe_import(pymod, "semilogx"); - s_python_function_semilogy = safe_import(pymod, "semilogy"); - s_python_function_loglog = safe_import(pymod, "loglog"); - s_python_function_fill = safe_import(pymod, "fill"); - s_python_function_fill_between = safe_import(pymod, "fill_between"); - s_python_function_hist = safe_import(pymod,"hist"); - s_python_function_scatter = safe_import(pymod,"scatter"); - s_python_function_boxplot = safe_import(pymod,"boxplot"); - s_python_function_subplot = safe_import(pymod, "subplot"); - s_python_function_subplot2grid = safe_import(pymod, "subplot2grid"); - s_python_function_legend = safe_import(pymod, "legend"); - s_python_function_xlim = safe_import(pymod, "xlim"); - s_python_function_ylim = safe_import(pymod, "ylim"); - s_python_function_title = safe_import(pymod, "title"); - s_python_function_axis = safe_import(pymod, "axis"); - s_python_function_axhline = safe_import(pymod, "axhline"); - s_python_function_axvline = safe_import(pymod, "axvline"); - s_python_function_axvspan = safe_import(pymod, "axvspan"); - s_python_function_xlabel = safe_import(pymod, "xlabel"); - s_python_function_ylabel = safe_import(pymod, "ylabel"); - s_python_function_gca = safe_import(pymod, "gca"); - s_python_function_xticks = safe_import(pymod, "xticks"); - s_python_function_yticks = safe_import(pymod, "yticks"); - s_python_function_margins = safe_import(pymod, "margins"); - s_python_function_tick_params = safe_import(pymod, "tick_params"); - s_python_function_grid = safe_import(pymod, "grid"); - s_python_function_ion = safe_import(pymod, "ion"); - s_python_function_ginput = safe_import(pymod, "ginput"); - s_python_function_save = safe_import(pylabmod, "savefig"); - s_python_function_annotate = safe_import(pymod,"annotate"); - s_python_function_cla = safe_import(pymod, "cla"); - s_python_function_clf = safe_import(pymod, "clf"); - s_python_function_errorbar = safe_import(pymod, "errorbar"); - s_python_function_tight_layout = safe_import(pymod, "tight_layout"); - s_python_function_stem = safe_import(pymod, "stem"); - s_python_function_xkcd = safe_import(pymod, "xkcd"); - s_python_function_text = safe_import(pymod, "text"); - s_python_function_suptitle = safe_import(pymod, "suptitle"); - s_python_function_bar = safe_import(pymod,"bar"); - s_python_function_barh = safe_import(pymod, "barh"); - s_python_function_colorbar = PyObject_GetAttrString(pymod, "colorbar"); - s_python_function_subplots_adjust = safe_import(pymod,"subplots_adjust"); - s_python_function_rcparams = PyObject_GetAttrString(pymod, "rcParams"); - s_python_function_spy = PyObject_GetAttrString(pymod, "spy"); -#ifndef WITHOUT_NUMPY - s_python_function_imshow = safe_import(pymod, "imshow"); -#endif - s_python_empty_tuple = PyTuple_New(0); - } - - ~_interpreter() { - Py_Finalize(); - } -}; - -} // end namespace detail - -/// Select the backend -/// -/// **NOTE:** This must be called before the first plot command to have -/// any effect. -/// -/// Mainly useful to select the non-interactive 'Agg' backend when running -/// matplotlibcpp in headless mode, for example on a machine with no display. -/// -/// See also: https://matplotlib.org/2.0.2/api/matplotlib_configuration_api.html#matplotlib.use -inline void backend(const std::string& name) -{ - detail::s_backend = name; -} - -inline bool annotate(std::string annotation, double x, double y) -{ - detail::_interpreter::get(); - - PyObject * xy = PyTuple_New(2); - PyObject * str = PyString_FromString(annotation.c_str()); - - PyTuple_SetItem(xy,0,PyFloat_FromDouble(x)); - PyTuple_SetItem(xy,1,PyFloat_FromDouble(y)); - - PyObject* kwargs = PyDict_New(); - PyDict_SetItemString(kwargs, "xy", xy); - - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, str); - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_annotate, args, kwargs); - - Py_DECREF(args); - Py_DECREF(kwargs); - - if(res) Py_DECREF(res); - - return res; -} - -namespace detail { - -#ifndef WITHOUT_NUMPY -// Type selector for numpy array conversion -template <typename T> struct select_npy_type { const static NPY_TYPES type = NPY_NOTYPE; }; //Default -template <> struct select_npy_type<double> { const static NPY_TYPES type = NPY_DOUBLE; }; -template <> struct select_npy_type<float> { const static NPY_TYPES type = NPY_FLOAT; }; -template <> struct select_npy_type<bool> { const static NPY_TYPES type = NPY_BOOL; }; -template <> struct select_npy_type<int8_t> { const static NPY_TYPES type = NPY_INT8; }; -template <> struct select_npy_type<int16_t> { const static NPY_TYPES type = NPY_SHORT; }; -template <> struct select_npy_type<int32_t> { const static NPY_TYPES type = NPY_INT; }; -template <> struct select_npy_type<int64_t> { const static NPY_TYPES type = NPY_INT64; }; -template <> struct select_npy_type<uint8_t> { const static NPY_TYPES type = NPY_UINT8; }; -template <> struct select_npy_type<uint16_t> { const static NPY_TYPES type = NPY_USHORT; }; -template <> struct select_npy_type<uint32_t> { const static NPY_TYPES type = NPY_ULONG; }; -template <> struct select_npy_type<uint64_t> { const static NPY_TYPES type = NPY_UINT64; }; - -// Sanity checks; comment them out or change the numpy type below if you're compiling on -// a platform where they don't apply -static_assert(sizeof(long long) == 8); -template <> struct select_npy_type<long long> { const static NPY_TYPES type = NPY_INT64; }; -static_assert(sizeof(unsigned long long) == 8); -template <> struct select_npy_type<unsigned long long> { const static NPY_TYPES type = NPY_UINT64; }; - -template<typename Numeric> -PyObject* get_array(const std::vector<Numeric>& v) -{ - npy_intp vsize = v.size(); - NPY_TYPES type = select_npy_type<Numeric>::type; - if (type == NPY_NOTYPE) { - size_t memsize = v.size()*sizeof(double); - double* dp = static_cast<double*>(::malloc(memsize)); - for (size_t i=0; i<v.size(); ++i) - dp[i] = v[i]; - PyObject* varray = PyArray_SimpleNewFromData(1, &vsize, NPY_DOUBLE, dp); - PyArray_UpdateFlags(reinterpret_cast<PyArrayObject*>(varray), NPY_ARRAY_OWNDATA); - return varray; - } - - PyObject* varray = PyArray_SimpleNewFromData(1, &vsize, type, (void*)(v.data())); - return varray; -} - - -template<typename Numeric> -PyObject* get_2darray(const std::vector<::std::vector<Numeric>>& v) -{ - if (v.size() < 1) throw std::runtime_error("get_2d_array v too small"); - - npy_intp vsize[2] = {static_cast<npy_intp>(v.size()), - static_cast<npy_intp>(v[0].size())}; - - PyArrayObject *varray = - (PyArrayObject *)PyArray_SimpleNew(2, vsize, NPY_DOUBLE); - - double *vd_begin = static_cast<double *>(PyArray_DATA(varray)); - - for (const ::std::vector<Numeric> &v_row : v) { - if (v_row.size() != static_cast<size_t>(vsize[1])) - throw std::runtime_error("Missmatched array size"); - std::copy(v_row.begin(), v_row.end(), vd_begin); - vd_begin += vsize[1]; - } - - return reinterpret_cast<PyObject *>(varray); -} - -#else // fallback if we don't have numpy: copy every element of the given vector - -template<typename Numeric> -PyObject* get_array(const std::vector<Numeric>& v) -{ - PyObject* list = PyList_New(v.size()); - for(size_t i = 0; i < v.size(); ++i) { - PyList_SetItem(list, i, PyFloat_FromDouble(v.at(i))); - } - return list; -} - -#endif // WITHOUT_NUMPY - -// sometimes, for labels and such, we need string arrays -inline PyObject * get_array(const std::vector<std::string>& strings) -{ - PyObject* list = PyList_New(strings.size()); - for (std::size_t i = 0; i < strings.size(); ++i) { - PyList_SetItem(list, i, PyString_FromString(strings[i].c_str())); - } - return list; -} - -// not all matplotlib need 2d arrays, some prefer lists of lists -template<typename Numeric> -PyObject* get_listlist(const std::vector<std::vector<Numeric>>& ll) -{ - PyObject* listlist = PyList_New(ll.size()); - for (std::size_t i = 0; i < ll.size(); ++i) { - PyList_SetItem(listlist, i, get_array(ll[i])); - } - return listlist; -} - -} // namespace detail - -/// Plot a line through the given x and y data points.. -/// -/// See: https://matplotlib.org/3.2.1/api/_as_gen/matplotlib.pyplot.plot.html -template<typename Numeric> -bool plot(const std::vector<Numeric> &x, const std::vector<Numeric> &y, const std::map<std::string, std::string>& keywords) -{ - assert(x.size() == y.size()); - - detail::_interpreter::get(); - - // using numpy arrays - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - - // construct positional args - PyObject* args = PyTuple_New(2); - PyTuple_SetItem(args, 0, xarray); - PyTuple_SetItem(args, 1, yarray); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) - { - PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, args, kwargs); - - Py_DECREF(args); - Py_DECREF(kwargs); - if(res) Py_DECREF(res); - - return res; -} - -// TODO - it should be possible to make this work by implementing -// a non-numpy alternative for `detail::get_2darray()`. -#ifndef WITHOUT_NUMPY -template <typename Numeric> -void plot_surface(const std::vector<::std::vector<Numeric>> &x, - const std::vector<::std::vector<Numeric>> &y, - const std::vector<::std::vector<Numeric>> &z, - const std::map<std::string, std::string> &keywords = - std::map<std::string, std::string>(), - const long fig_number=0) -{ - detail::_interpreter::get(); - - // We lazily load the modules here the first time this function is called - // because I'm not sure that we can assume "matplotlib installed" implies - // "mpl_toolkits installed" on all platforms, and we don't want to require - // it for people who don't need 3d plots. - static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; - if (!mpl_toolkitsmod) { - detail::_interpreter::get(); - - PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); - PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); - if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } - - mpl_toolkitsmod = PyImport_Import(mpl_toolkits); - Py_DECREF(mpl_toolkits); - if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } - - axis3dmod = PyImport_Import(axis3d); - Py_DECREF(axis3d); - if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } - } - - assert(x.size() == y.size()); - assert(y.size() == z.size()); - - // using numpy arrays - PyObject *xarray = detail::get_2darray(x); - PyObject *yarray = detail::get_2darray(y); - PyObject *zarray = detail::get_2darray(z); - - // construct positional args - PyObject *args = PyTuple_New(3); - PyTuple_SetItem(args, 0, xarray); - PyTuple_SetItem(args, 1, yarray); - PyTuple_SetItem(args, 2, zarray); - - // Build up the kw args. - PyObject *kwargs = PyDict_New(); - PyDict_SetItemString(kwargs, "rstride", PyInt_FromLong(1)); - PyDict_SetItemString(kwargs, "cstride", PyInt_FromLong(1)); - - PyObject *python_colormap_coolwarm = PyObject_GetAttrString( - detail::_interpreter::get().s_python_colormap, "coolwarm"); - - PyDict_SetItemString(kwargs, "cmap", python_colormap_coolwarm); - - for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); - it != keywords.end(); ++it) { - if (it->first == "linewidth" || it->first == "alpha") { - PyDict_SetItemString(kwargs, it->first.c_str(), - PyFloat_FromDouble(std::stod(it->second))); - } else { - PyDict_SetItemString(kwargs, it->first.c_str(), - PyString_FromString(it->second.c_str())); - } - } - - PyObject *fig_args = PyTuple_New(1); - PyObject* fig = nullptr; - PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number)); - PyObject *fig_exists = - PyObject_CallObject( - detail::_interpreter::get().s_python_function_fignum_exists, fig_args); - if (!PyObject_IsTrue(fig_exists)) { - fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, - detail::_interpreter::get().s_python_empty_tuple); - } else { - fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, - fig_args); - } - Py_DECREF(fig_exists); - if (!fig) throw std::runtime_error("Call to figure() failed."); - - PyObject *gca_kwargs = PyDict_New(); - PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d")); - - PyObject *gca = PyObject_GetAttrString(fig, "gca"); - if (!gca) throw std::runtime_error("No gca"); - Py_INCREF(gca); - PyObject *axis = PyObject_Call( - gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs); - - if (!axis) throw std::runtime_error("No axis"); - Py_INCREF(axis); - - Py_DECREF(gca); - Py_DECREF(gca_kwargs); - - PyObject *plot_surface = PyObject_GetAttrString(axis, "plot_surface"); - if (!plot_surface) throw std::runtime_error("No surface"); - Py_INCREF(plot_surface); - PyObject *res = PyObject_Call(plot_surface, args, kwargs); - if (!res) throw std::runtime_error("failed surface"); - Py_DECREF(plot_surface); - - Py_DECREF(axis); - Py_DECREF(args); - Py_DECREF(kwargs); - if (res) Py_DECREF(res); -} - -template <typename Numeric> -void contour(const std::vector<::std::vector<Numeric>> &x, - const std::vector<::std::vector<Numeric>> &y, - const std::vector<::std::vector<Numeric>> &z, - const std::map<std::string, std::string> &keywords = {}) -{ - detail::_interpreter::get(); - - // using numpy arrays - PyObject *xarray = detail::get_2darray(x); - PyObject *yarray = detail::get_2darray(y); - PyObject *zarray = detail::get_2darray(z); - - // construct positional args - PyObject *args = PyTuple_New(3); - PyTuple_SetItem(args, 0, xarray); - PyTuple_SetItem(args, 1, yarray); - PyTuple_SetItem(args, 2, zarray); - - // Build up the kw args. - PyObject *kwargs = PyDict_New(); - - PyObject *python_colormap_coolwarm = PyObject_GetAttrString( - detail::_interpreter::get().s_python_colormap, "coolwarm"); - - PyDict_SetItemString(kwargs, "cmap", python_colormap_coolwarm); - - for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); - it != keywords.end(); ++it) { - PyDict_SetItemString(kwargs, it->first.c_str(), - PyString_FromString(it->second.c_str())); - } - - PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_contour, args, kwargs); - if (!res) - throw std::runtime_error("failed contour"); - - Py_DECREF(args); - Py_DECREF(kwargs); - if (res) Py_DECREF(res); -} - -template <typename Numeric> -void spy(const std::vector<::std::vector<Numeric>> &x, - const double markersize = -1, // -1 for default matplotlib size - const std::map<std::string, std::string> &keywords = {}) -{ - detail::_interpreter::get(); - - PyObject *xarray = detail::get_2darray(x); - - PyObject *kwargs = PyDict_New(); - if (markersize != -1) { - PyDict_SetItemString(kwargs, "markersize", PyFloat_FromDouble(markersize)); - } - for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); - it != keywords.end(); ++it) { - PyDict_SetItemString(kwargs, it->first.c_str(), - PyString_FromString(it->second.c_str())); - } - - PyObject *plot_args = PyTuple_New(1); - PyTuple_SetItem(plot_args, 0, xarray); - - PyObject *res = PyObject_Call( - detail::_interpreter::get().s_python_function_spy, plot_args, kwargs); - - Py_DECREF(plot_args); - Py_DECREF(kwargs); - if (res) Py_DECREF(res); -} -#endif // WITHOUT_NUMPY - -template <typename Numeric> -void plot3(const std::vector<Numeric> &x, - const std::vector<Numeric> &y, - const std::vector<Numeric> &z, - const std::map<std::string, std::string> &keywords = - std::map<std::string, std::string>(), - const long fig_number=0) -{ - detail::_interpreter::get(); - - // Same as with plot_surface: We lazily load the modules here the first time - // this function is called because I'm not sure that we can assume "matplotlib - // installed" implies "mpl_toolkits installed" on all platforms, and we don't - // want to require it for people who don't need 3d plots. - static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; - if (!mpl_toolkitsmod) { - detail::_interpreter::get(); - - PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); - PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); - if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } - - mpl_toolkitsmod = PyImport_Import(mpl_toolkits); - Py_DECREF(mpl_toolkits); - if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } - - axis3dmod = PyImport_Import(axis3d); - Py_DECREF(axis3d); - if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } - } - - assert(x.size() == y.size()); - assert(y.size() == z.size()); - - PyObject *xarray = detail::get_array(x); - PyObject *yarray = detail::get_array(y); - PyObject *zarray = detail::get_array(z); - - // construct positional args - PyObject *args = PyTuple_New(3); - PyTuple_SetItem(args, 0, xarray); - PyTuple_SetItem(args, 1, yarray); - PyTuple_SetItem(args, 2, zarray); - - // Build up the kw args. - PyObject *kwargs = PyDict_New(); - - for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); - it != keywords.end(); ++it) { - PyDict_SetItemString(kwargs, it->first.c_str(), - PyString_FromString(it->second.c_str())); - } - - PyObject *fig_args = PyTuple_New(1); - PyObject* fig = nullptr; - PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number)); - PyObject *fig_exists = - PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, fig_args); - if (!PyObject_IsTrue(fig_exists)) { - fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, - detail::_interpreter::get().s_python_empty_tuple); - } else { - fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, - fig_args); - } - if (!fig) throw std::runtime_error("Call to figure() failed."); - - PyObject *gca_kwargs = PyDict_New(); - PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d")); - - PyObject *gca = PyObject_GetAttrString(fig, "gca"); - if (!gca) throw std::runtime_error("No gca"); - Py_INCREF(gca); - PyObject *axis = PyObject_Call( - gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs); - - if (!axis) throw std::runtime_error("No axis"); - Py_INCREF(axis); - - Py_DECREF(gca); - Py_DECREF(gca_kwargs); - - PyObject *plot3 = PyObject_GetAttrString(axis, "plot"); - if (!plot3) throw std::runtime_error("No 3D line plot"); - Py_INCREF(plot3); - PyObject *res = PyObject_Call(plot3, args, kwargs); - if (!res) throw std::runtime_error("Failed 3D line plot"); - Py_DECREF(plot3); - - Py_DECREF(axis); - Py_DECREF(args); - Py_DECREF(kwargs); - if (res) Py_DECREF(res); -} - -template<typename Numeric> -bool stem(const std::vector<Numeric> &x, const std::vector<Numeric> &y, const std::map<std::string, std::string>& keywords) -{ - assert(x.size() == y.size()); - - detail::_interpreter::get(); - - // using numpy arrays - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - - // construct positional args - PyObject* args = PyTuple_New(2); - PyTuple_SetItem(args, 0, xarray); - PyTuple_SetItem(args, 1, yarray); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for (std::map<std::string, std::string>::const_iterator it = - keywords.begin(); it != keywords.end(); ++it) { - PyDict_SetItemString(kwargs, it->first.c_str(), - PyString_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call( - detail::_interpreter::get().s_python_function_stem, args, kwargs); - - Py_DECREF(args); - Py_DECREF(kwargs); - if (res) - Py_DECREF(res); - - return res; -} - -template< typename Numeric > -bool fill(const std::vector<Numeric>& x, const std::vector<Numeric>& y, const std::map<std::string, std::string>& keywords) -{ - assert(x.size() == y.size()); - - detail::_interpreter::get(); - - // using numpy arrays - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - - // construct positional args - PyObject* args = PyTuple_New(2); - PyTuple_SetItem(args, 0, xarray); - PyTuple_SetItem(args, 1, yarray); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for (auto it = keywords.begin(); it != keywords.end(); ++it) { - PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill, args, kwargs); - - Py_DECREF(args); - Py_DECREF(kwargs); - - if (res) Py_DECREF(res); - - return res; -} - -template< typename Numeric > -bool fill_between(const std::vector<Numeric>& x, const std::vector<Numeric>& y1, const std::vector<Numeric>& y2, const std::map<std::string, std::string>& keywords) -{ - assert(x.size() == y1.size()); - assert(x.size() == y2.size()); - - detail::_interpreter::get(); - - // using numpy arrays - PyObject* xarray = detail::get_array(x); - PyObject* y1array = detail::get_array(y1); - PyObject* y2array = detail::get_array(y2); - - // construct positional args - PyObject* args = PyTuple_New(3); - PyTuple_SetItem(args, 0, xarray); - PyTuple_SetItem(args, 1, y1array); - PyTuple_SetItem(args, 2, y2array); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) { - PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill_between, args, kwargs); - - Py_DECREF(args); - Py_DECREF(kwargs); - if(res) Py_DECREF(res); - - return res; -} - -template <typename Numeric> -bool arrow(Numeric x, Numeric y, Numeric end_x, Numeric end_y, const std::string& fc = "r", - const std::string ec = "k", Numeric head_length = 0.25, Numeric head_width = 0.1625) { - PyObject* obj_x = PyFloat_FromDouble(x); - PyObject* obj_y = PyFloat_FromDouble(y); - PyObject* obj_end_x = PyFloat_FromDouble(end_x); - PyObject* obj_end_y = PyFloat_FromDouble(end_y); - - PyObject* kwargs = PyDict_New(); - PyDict_SetItemString(kwargs, "fc", PyString_FromString(fc.c_str())); - PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str())); - PyDict_SetItemString(kwargs, "head_width", PyFloat_FromDouble(head_width)); - PyDict_SetItemString(kwargs, "head_length", PyFloat_FromDouble(head_length)); - - PyObject* plot_args = PyTuple_New(4); - PyTuple_SetItem(plot_args, 0, obj_x); - PyTuple_SetItem(plot_args, 1, obj_y); - PyTuple_SetItem(plot_args, 2, obj_end_x); - PyTuple_SetItem(plot_args, 3, obj_end_y); - - PyObject* res = - PyObject_Call(detail::_interpreter::get().s_python_function_arrow, plot_args, kwargs); - - Py_DECREF(plot_args); - Py_DECREF(kwargs); - if (res) - Py_DECREF(res); - - return res; -} - -template< typename Numeric> -bool hist(const std::vector<Numeric>& y, long bins=10,std::string color="b", - double alpha=1.0, bool cumulative=false) -{ - detail::_interpreter::get(); - - PyObject* yarray = detail::get_array(y); - - PyObject* kwargs = PyDict_New(); - PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins)); - PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str())); - PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha)); - PyDict_SetItemString(kwargs, "cumulative", cumulative ? Py_True : Py_False); - - PyObject* plot_args = PyTuple_New(1); - - PyTuple_SetItem(plot_args, 0, yarray); - - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs); - - - Py_DECREF(plot_args); - Py_DECREF(kwargs); - if(res) Py_DECREF(res); - - return res; -} - -#ifndef WITHOUT_NUMPY -namespace detail { - -inline void imshow(void *ptr, const NPY_TYPES type, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords, PyObject** out) -{ - assert(type == NPY_UINT8 || type == NPY_FLOAT); - assert(colors == 1 || colors == 3 || colors == 4); - - detail::_interpreter::get(); - - // construct args - npy_intp dims[3] = { rows, columns, colors }; - PyObject *args = PyTuple_New(1); - PyTuple_SetItem(args, 0, PyArray_SimpleNewFromData(colors == 1 ? 2 : 3, dims, type, ptr)); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) - { - PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); - } - - PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_imshow, args, kwargs); - Py_DECREF(args); - Py_DECREF(kwargs); - if (!res) - throw std::runtime_error("Call to imshow() failed"); - if (out) - *out = res; - else - Py_DECREF(res); -} - -} // namespace detail - -inline void imshow(const unsigned char *ptr, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords = {}, PyObject** out = nullptr) -{ - detail::imshow((void *) ptr, NPY_UINT8, rows, columns, colors, keywords, out); -} - -inline void imshow(const float *ptr, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords = {}, PyObject** out = nullptr) -{ - detail::imshow((void *) ptr, NPY_FLOAT, rows, columns, colors, keywords, out); -} - -#ifdef WITH_OPENCV -void imshow(const cv::Mat &image, const std::map<std::string, std::string> &keywords = {}) -{ - // Convert underlying type of matrix, if needed - cv::Mat image2; - NPY_TYPES npy_type = NPY_UINT8; - switch (image.type() & CV_MAT_DEPTH_MASK) { - case CV_8U: - image2 = image; - break; - case CV_32F: - image2 = image; - npy_type = NPY_FLOAT; - break; - default: - image.convertTo(image2, CV_MAKETYPE(CV_8U, image.channels())); - } - - // If color image, convert from BGR to RGB - switch (image2.channels()) { - case 3: - cv::cvtColor(image2, image2, CV_BGR2RGB); - break; - case 4: - cv::cvtColor(image2, image2, CV_BGRA2RGBA); - } - - detail::imshow(image2.data, npy_type, image2.rows, image2.cols, image2.channels(), keywords); -} -#endif // WITH_OPENCV -#endif // WITHOUT_NUMPY - -template<typename NumericX, typename NumericY> -bool scatter(const std::vector<NumericX>& x, - const std::vector<NumericY>& y, - const double s=1.0, // The marker size in points**2 - const std::map<std::string, std::string> & keywords = {}) -{ - detail::_interpreter::get(); - - assert(x.size() == y.size()); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - - PyObject* kwargs = PyDict_New(); - PyDict_SetItemString(kwargs, "s", PyLong_FromLong(s)); - for (const auto& it : keywords) - { - PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str())); - } - - PyObject* plot_args = PyTuple_New(2); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_scatter, plot_args, kwargs); - - Py_DECREF(plot_args); - Py_DECREF(kwargs); - if(res) Py_DECREF(res); - - return res; -} - -template<typename NumericX, typename NumericY, typename NumericColors> - bool scatter_colored(const std::vector<NumericX>& x, - const std::vector<NumericY>& y, - const std::vector<NumericColors>& colors, - const double s=1.0, // The marker size in points**2 - const std::map<std::string, std::string> & keywords = {}) - { - detail::_interpreter::get(); - - assert(x.size() == y.size()); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - PyObject* colors_array = detail::get_array(colors); - - PyObject* kwargs = PyDict_New(); - PyDict_SetItemString(kwargs, "s", PyLong_FromLong(s)); - PyDict_SetItemString(kwargs, "c", colors_array); - - for (const auto& it : keywords) - { - PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str())); - } - - PyObject* plot_args = PyTuple_New(2); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_scatter, plot_args, kwargs); - - Py_DECREF(plot_args); - Py_DECREF(kwargs); - if(res) Py_DECREF(res); - - return res; - } - - -template<typename NumericX, typename NumericY, typename NumericZ> -bool scatter(const std::vector<NumericX>& x, - const std::vector<NumericY>& y, - const std::vector<NumericZ>& z, - const double s=1.0, // The marker size in points**2 - const std::map<std::string, std::string> & keywords = {}, - const long fig_number=0) { - detail::_interpreter::get(); - - // Same as with plot_surface: We lazily load the modules here the first time - // this function is called because I'm not sure that we can assume "matplotlib - // installed" implies "mpl_toolkits installed" on all platforms, and we don't - // want to require it for people who don't need 3d plots. - static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; - if (!mpl_toolkitsmod) { - detail::_interpreter::get(); - - PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); - PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); - if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } - - mpl_toolkitsmod = PyImport_Import(mpl_toolkits); - Py_DECREF(mpl_toolkits); - if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } - - axis3dmod = PyImport_Import(axis3d); - Py_DECREF(axis3d); - if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } - } - - assert(x.size() == y.size()); - assert(y.size() == z.size()); - - PyObject *xarray = detail::get_array(x); - PyObject *yarray = detail::get_array(y); - PyObject *zarray = detail::get_array(z); - - // construct positional args - PyObject *args = PyTuple_New(3); - PyTuple_SetItem(args, 0, xarray); - PyTuple_SetItem(args, 1, yarray); - PyTuple_SetItem(args, 2, zarray); - - // Build up the kw args. - PyObject *kwargs = PyDict_New(); - - for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); - it != keywords.end(); ++it) { - PyDict_SetItemString(kwargs, it->first.c_str(), - PyString_FromString(it->second.c_str())); - } - PyObject *fig_args = PyTuple_New(1); - PyObject* fig = nullptr; - PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number)); - PyObject *fig_exists = - PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, fig_args); - if (!PyObject_IsTrue(fig_exists)) { - fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, - detail::_interpreter::get().s_python_empty_tuple); - } else { - fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, - fig_args); - } - Py_DECREF(fig_exists); - if (!fig) throw std::runtime_error("Call to figure() failed."); - - PyObject *gca_kwargs = PyDict_New(); - PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d")); - - PyObject *gca = PyObject_GetAttrString(fig, "gca"); - if (!gca) throw std::runtime_error("No gca"); - Py_INCREF(gca); - PyObject *axis = PyObject_Call( - gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs); - - if (!axis) throw std::runtime_error("No axis"); - Py_INCREF(axis); - - Py_DECREF(gca); - Py_DECREF(gca_kwargs); - - PyObject *plot3 = PyObject_GetAttrString(axis, "scatter"); - if (!plot3) throw std::runtime_error("No 3D line plot"); - Py_INCREF(plot3); - PyObject *res = PyObject_Call(plot3, args, kwargs); - if (!res) throw std::runtime_error("Failed 3D line plot"); - Py_DECREF(plot3); - - Py_DECREF(axis); - Py_DECREF(args); - Py_DECREF(kwargs); - Py_DECREF(fig); - if (res) Py_DECREF(res); - return res; - -} - -template<typename Numeric> -bool boxplot(const std::vector<std::vector<Numeric>>& data, - const std::vector<std::string>& labels = {}, - const std::map<std::string, std::string> & keywords = {}) -{ - detail::_interpreter::get(); - - PyObject* listlist = detail::get_listlist(data); - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, listlist); - - PyObject* kwargs = PyDict_New(); - - // kwargs needs the labels, if there are (the correct number of) labels - if (!labels.empty() && labels.size() == data.size()) { - PyDict_SetItemString(kwargs, "labels", detail::get_array(labels)); - } - - // take care of the remaining keywords - for (const auto& it : keywords) - { - PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str())); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_boxplot, args, kwargs); - - Py_DECREF(args); - Py_DECREF(kwargs); - - if(res) Py_DECREF(res); - - return res; -} - -template<typename Numeric> -bool boxplot(const std::vector<Numeric>& data, - const std::map<std::string, std::string> & keywords = {}) -{ - detail::_interpreter::get(); - - PyObject* vector = detail::get_array(data); - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, vector); - - PyObject* kwargs = PyDict_New(); - for (const auto& it : keywords) - { - PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str())); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_boxplot, args, kwargs); - - Py_DECREF(args); - Py_DECREF(kwargs); - - if(res) Py_DECREF(res); - - return res; -} - -template <typename Numeric> -bool bar(const std::vector<Numeric> & x, - const std::vector<Numeric> & y, - std::string ec = "black", - std::string ls = "-", - double lw = 1.0, - const std::map<std::string, std::string> & keywords = {}) -{ - detail::_interpreter::get(); - - PyObject * xarray = detail::get_array(x); - PyObject * yarray = detail::get_array(y); - - PyObject * kwargs = PyDict_New(); - - PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str())); - PyDict_SetItemString(kwargs, "ls", PyString_FromString(ls.c_str())); - PyDict_SetItemString(kwargs, "lw", PyFloat_FromDouble(lw)); - - for (std::map<std::string, std::string>::const_iterator it = - keywords.begin(); - it != keywords.end(); - ++it) { - PyDict_SetItemString( - kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); - } - - PyObject * plot_args = PyTuple_New(2); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - - PyObject * res = PyObject_Call( - detail::_interpreter::get().s_python_function_bar, plot_args, kwargs); - - Py_DECREF(plot_args); - Py_DECREF(kwargs); - if (res) Py_DECREF(res); - - return res; -} - -template <typename Numeric> -bool bar(const std::vector<Numeric> & y, - std::string ec = "black", - std::string ls = "-", - double lw = 1.0, - const std::map<std::string, std::string> & keywords = {}) -{ - using T = typename std::remove_reference<decltype(y)>::type::value_type; - - detail::_interpreter::get(); - - std::vector<T> x; - for (std::size_t i = 0; i < y.size(); i++) { x.push_back(i); } - - return bar(x, y, ec, ls, lw, keywords); -} - - -template<typename Numeric> -bool barh(const std::vector<Numeric> &x, const std::vector<Numeric> &y, std::string ec = "black", std::string ls = "-", double lw = 1.0, const std::map<std::string, std::string> &keywords = { }) { - PyObject *xarray = detail::get_array(x); - PyObject *yarray = detail::get_array(y); - - PyObject *kwargs = PyDict_New(); - - PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str())); - PyDict_SetItemString(kwargs, "ls", PyString_FromString(ls.c_str())); - PyDict_SetItemString(kwargs, "lw", PyFloat_FromDouble(lw)); - - for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) { - PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); - } - - PyObject *plot_args = PyTuple_New(2); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - - PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_barh, plot_args, kwargs); - - Py_DECREF(plot_args); - Py_DECREF(kwargs); - if (res) Py_DECREF(res); - - return res; -} - - -inline bool subplots_adjust(const std::map<std::string, double>& keywords = {}) -{ - detail::_interpreter::get(); - - PyObject* kwargs = PyDict_New(); - for (std::map<std::string, double>::const_iterator it = - keywords.begin(); it != keywords.end(); ++it) { - PyDict_SetItemString(kwargs, it->first.c_str(), - PyFloat_FromDouble(it->second)); - } - - - PyObject* plot_args = PyTuple_New(0); - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_subplots_adjust, plot_args, kwargs); - - Py_DECREF(plot_args); - Py_DECREF(kwargs); - if(res) Py_DECREF(res); - - return res; -} - -template< typename Numeric> -bool named_hist(std::string label,const std::vector<Numeric>& y, long bins=10, std::string color="b", double alpha=1.0) -{ - detail::_interpreter::get(); - - PyObject* yarray = detail::get_array(y); - - PyObject* kwargs = PyDict_New(); - PyDict_SetItemString(kwargs, "label", PyString_FromString(label.c_str())); - PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins)); - PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str())); - PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha)); - - - PyObject* plot_args = PyTuple_New(1); - PyTuple_SetItem(plot_args, 0, yarray); - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs); - - Py_DECREF(plot_args); - Py_DECREF(kwargs); - if(res) Py_DECREF(res); - - return res; -} - -template<typename NumericX, typename NumericY> -bool plot(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "") -{ - assert(x.size() == y.size()); - - detail::_interpreter::get(); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - - PyObject* pystring = PyString_FromString(s.c_str()); - - PyObject* plot_args = PyTuple_New(3); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - PyTuple_SetItem(plot_args, 2, pystring); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args); - - Py_DECREF(plot_args); - if(res) Py_DECREF(res); - - return res; -} - -template <typename NumericX, typename NumericY, typename NumericZ> -bool contour(const std::vector<NumericX>& x, const std::vector<NumericY>& y, - const std::vector<NumericZ>& z, - const std::map<std::string, std::string>& keywords = {}) { - assert(x.size() == y.size() && x.size() == z.size()); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - PyObject* zarray = detail::get_array(z); - - PyObject* plot_args = PyTuple_New(3); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - PyTuple_SetItem(plot_args, 2, zarray); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); - it != keywords.end(); ++it) { - PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); - } - - PyObject* res = - PyObject_Call(detail::_interpreter::get().s_python_function_contour, plot_args, kwargs); - - Py_DECREF(kwargs); - Py_DECREF(plot_args); - if (res) - Py_DECREF(res); - - return res; -} - -template<typename NumericX, typename NumericY, typename NumericU, typename NumericW> -bool quiver(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::vector<NumericU>& u, const std::vector<NumericW>& w, const std::map<std::string, std::string>& keywords = {}) -{ - assert(x.size() == y.size() && x.size() == u.size() && u.size() == w.size()); - - detail::_interpreter::get(); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - PyObject* uarray = detail::get_array(u); - PyObject* warray = detail::get_array(w); - - PyObject* plot_args = PyTuple_New(4); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - PyTuple_SetItem(plot_args, 2, uarray); - PyTuple_SetItem(plot_args, 3, warray); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) - { - PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call( - detail::_interpreter::get().s_python_function_quiver, plot_args, kwargs); - - Py_DECREF(kwargs); - Py_DECREF(plot_args); - if (res) - Py_DECREF(res); - - return res; -} - -template<typename NumericX, typename NumericY, typename NumericZ, typename NumericU, typename NumericW, typename NumericV> -bool quiver(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::vector<NumericZ>& z, const std::vector<NumericU>& u, const std::vector<NumericW>& w, const std::vector<NumericV>& v, const std::map<std::string, std::string>& keywords = {}) -{ - //set up 3d axes stuff - static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; - if (!mpl_toolkitsmod) { - detail::_interpreter::get(); - - PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); - PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); - if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } - - mpl_toolkitsmod = PyImport_Import(mpl_toolkits); - Py_DECREF(mpl_toolkits); - if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } - - axis3dmod = PyImport_Import(axis3d); - Py_DECREF(axis3d); - if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } - } - - //assert sizes match up - assert(x.size() == y.size() && x.size() == u.size() && u.size() == w.size() && x.size() == z.size() && x.size() == v.size() && u.size() == v.size()); - - //set up parameters - detail::_interpreter::get(); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - PyObject* zarray = detail::get_array(z); - PyObject* uarray = detail::get_array(u); - PyObject* warray = detail::get_array(w); - PyObject* varray = detail::get_array(v); - - PyObject* plot_args = PyTuple_New(6); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - PyTuple_SetItem(plot_args, 2, zarray); - PyTuple_SetItem(plot_args, 3, uarray); - PyTuple_SetItem(plot_args, 4, warray); - PyTuple_SetItem(plot_args, 5, varray); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) - { - PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); - } - - //get figure gca to enable 3d projection - PyObject *fig = - PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, - detail::_interpreter::get().s_python_empty_tuple); - if (!fig) throw std::runtime_error("Call to figure() failed."); - - PyObject *gca_kwargs = PyDict_New(); - PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d")); - - PyObject *gca = PyObject_GetAttrString(fig, "gca"); - if (!gca) throw std::runtime_error("No gca"); - Py_INCREF(gca); - PyObject *axis = PyObject_Call( - gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs); - - if (!axis) throw std::runtime_error("No axis"); - Py_INCREF(axis); - Py_DECREF(gca); - Py_DECREF(gca_kwargs); - - //plot our boys bravely, plot them strongly, plot them with a wink and clap - PyObject *plot3 = PyObject_GetAttrString(axis, "quiver"); - if (!plot3) throw std::runtime_error("No 3D line plot"); - Py_INCREF(plot3); - PyObject* res = PyObject_Call( - plot3, plot_args, kwargs); - if (!res) throw std::runtime_error("Failed 3D plot"); - Py_DECREF(plot3); - Py_DECREF(axis); - Py_DECREF(kwargs); - Py_DECREF(plot_args); - if (res) - Py_DECREF(res); - - return res; -} - -template<typename NumericX, typename NumericY> -bool stem(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "") -{ - assert(x.size() == y.size()); - - detail::_interpreter::get(); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - - PyObject* pystring = PyString_FromString(s.c_str()); - - PyObject* plot_args = PyTuple_New(3); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - PyTuple_SetItem(plot_args, 2, pystring); - - PyObject* res = PyObject_CallObject( - detail::_interpreter::get().s_python_function_stem, plot_args); - - Py_DECREF(plot_args); - if (res) - Py_DECREF(res); - - return res; -} - -template<typename NumericX, typename NumericY> -bool semilogx(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "") -{ - assert(x.size() == y.size()); - - detail::_interpreter::get(); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - - PyObject* pystring = PyString_FromString(s.c_str()); - - PyObject* plot_args = PyTuple_New(3); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - PyTuple_SetItem(plot_args, 2, pystring); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_semilogx, plot_args); - - Py_DECREF(plot_args); - if(res) Py_DECREF(res); - - return res; -} - -template<typename NumericX, typename NumericY> -bool semilogy(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "") -{ - assert(x.size() == y.size()); - - detail::_interpreter::get(); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - - PyObject* pystring = PyString_FromString(s.c_str()); - - PyObject* plot_args = PyTuple_New(3); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - PyTuple_SetItem(plot_args, 2, pystring); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_semilogy, plot_args); - - Py_DECREF(plot_args); - if(res) Py_DECREF(res); - - return res; -} - -template<typename NumericX, typename NumericY> -bool loglog(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "") -{ - assert(x.size() == y.size()); - - detail::_interpreter::get(); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - - PyObject* pystring = PyString_FromString(s.c_str()); - - PyObject* plot_args = PyTuple_New(3); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - PyTuple_SetItem(plot_args, 2, pystring); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_loglog, plot_args); - - Py_DECREF(plot_args); - if(res) Py_DECREF(res); - - return res; -} - -template<typename NumericX, typename NumericY> -bool errorbar(const std::vector<NumericX> &x, const std::vector<NumericY> &y, const std::vector<NumericX> &yerr, const std::map<std::string, std::string> &keywords = {}) -{ - assert(x.size() == y.size()); - - detail::_interpreter::get(); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - PyObject* yerrarray = detail::get_array(yerr); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) - { - PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); - } - - PyDict_SetItemString(kwargs, "yerr", yerrarray); - - PyObject *plot_args = PyTuple_New(2); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - - PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_errorbar, plot_args, kwargs); - - Py_DECREF(kwargs); - Py_DECREF(plot_args); - - if (res) - Py_DECREF(res); - else - throw std::runtime_error("Call to errorbar() failed."); - - return res; -} - -template<typename Numeric> -bool named_plot(const std::string& name, const std::vector<Numeric>& y, const std::string& format = "") -{ - detail::_interpreter::get(); - - PyObject* kwargs = PyDict_New(); - PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); - - PyObject* yarray = detail::get_array(y); - - PyObject* pystring = PyString_FromString(format.c_str()); - - PyObject* plot_args = PyTuple_New(2); - - PyTuple_SetItem(plot_args, 0, yarray); - PyTuple_SetItem(plot_args, 1, pystring); - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs); - - Py_DECREF(kwargs); - Py_DECREF(plot_args); - if (res) Py_DECREF(res); - - return res; -} - -template<typename NumericX, typename NumericY> -bool named_plot(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "") -{ - detail::_interpreter::get(); - - PyObject* kwargs = PyDict_New(); - PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - - PyObject* pystring = PyString_FromString(format.c_str()); - - PyObject* plot_args = PyTuple_New(3); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - PyTuple_SetItem(plot_args, 2, pystring); - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs); - - Py_DECREF(kwargs); - Py_DECREF(plot_args); - if (res) Py_DECREF(res); - - return res; -} - -template<typename NumericX, typename NumericY> -bool named_semilogx(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "") -{ - detail::_interpreter::get(); - - PyObject* kwargs = PyDict_New(); - PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - - PyObject* pystring = PyString_FromString(format.c_str()); - - PyObject* plot_args = PyTuple_New(3); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - PyTuple_SetItem(plot_args, 2, pystring); - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_semilogx, plot_args, kwargs); - - Py_DECREF(kwargs); - Py_DECREF(plot_args); - if (res) Py_DECREF(res); - - return res; -} - -template<typename NumericX, typename NumericY> -bool named_semilogy(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "") -{ - detail::_interpreter::get(); - - PyObject* kwargs = PyDict_New(); - PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - - PyObject* pystring = PyString_FromString(format.c_str()); - - PyObject* plot_args = PyTuple_New(3); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - PyTuple_SetItem(plot_args, 2, pystring); - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_semilogy, plot_args, kwargs); - - Py_DECREF(kwargs); - Py_DECREF(plot_args); - if (res) Py_DECREF(res); - - return res; -} - -template<typename NumericX, typename NumericY> -bool named_loglog(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "") -{ - detail::_interpreter::get(); - - PyObject* kwargs = PyDict_New(); - PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - - PyObject* pystring = PyString_FromString(format.c_str()); - - PyObject* plot_args = PyTuple_New(3); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - PyTuple_SetItem(plot_args, 2, pystring); - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_loglog, plot_args, kwargs); - - Py_DECREF(kwargs); - Py_DECREF(plot_args); - if (res) Py_DECREF(res); - - return res; -} - -template<typename Numeric> -bool plot(const std::vector<Numeric>& y, const std::string& format = "") -{ - std::vector<Numeric> x(y.size()); - for(size_t i=0; i<x.size(); ++i) x.at(i) = i; - return plot(x,y,format); -} - -template<typename Numeric> -bool plot(const std::vector<Numeric>& y, const std::map<std::string, std::string>& keywords) -{ - std::vector<Numeric> x(y.size()); - for(size_t i=0; i<x.size(); ++i) x.at(i) = i; - return plot(x,y,keywords); -} - -template<typename Numeric> -bool stem(const std::vector<Numeric>& y, const std::string& format = "") -{ - std::vector<Numeric> x(y.size()); - for (size_t i = 0; i < x.size(); ++i) x.at(i) = i; - return stem(x, y, format); -} - -template<typename Numeric> -void text(Numeric x, Numeric y, const std::string& s = "") -{ - detail::_interpreter::get(); - - PyObject* args = PyTuple_New(3); - PyTuple_SetItem(args, 0, PyFloat_FromDouble(x)); - PyTuple_SetItem(args, 1, PyFloat_FromDouble(y)); - PyTuple_SetItem(args, 2, PyString_FromString(s.c_str())); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_text, args); - if(!res) throw std::runtime_error("Call to text() failed."); - - Py_DECREF(args); - Py_DECREF(res); -} - -inline void colorbar(PyObject* mappable = NULL, const std::map<std::string, float>& keywords = {}) -{ - if (mappable == NULL) - throw std::runtime_error("Must call colorbar with PyObject* returned from an image, contour, surface, etc."); - - detail::_interpreter::get(); - - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, mappable); - - PyObject* kwargs = PyDict_New(); - for(std::map<std::string, float>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) - { - PyDict_SetItemString(kwargs, it->first.c_str(), PyFloat_FromDouble(it->second)); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_colorbar, args, kwargs); - if(!res) throw std::runtime_error("Call to colorbar() failed."); - - Py_DECREF(args); - Py_DECREF(kwargs); - Py_DECREF(res); -} - - -inline long figure(long number = -1) -{ - detail::_interpreter::get(); - - PyObject *res; - if (number == -1) - res = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, detail::_interpreter::get().s_python_empty_tuple); - else { - assert(number > 0); - - // Make sure interpreter is initialised - detail::_interpreter::get(); - - PyObject *args = PyTuple_New(1); - PyTuple_SetItem(args, 0, PyLong_FromLong(number)); - res = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, args); - Py_DECREF(args); - } - - if(!res) throw std::runtime_error("Call to figure() failed."); - - PyObject* num = PyObject_GetAttrString(res, "number"); - if (!num) throw std::runtime_error("Could not get number attribute of figure object"); - const long figureNumber = PyLong_AsLong(num); - - Py_DECREF(num); - Py_DECREF(res); - - return figureNumber; -} - -inline bool fignum_exists(long number) -{ - detail::_interpreter::get(); - - PyObject *args = PyTuple_New(1); - PyTuple_SetItem(args, 0, PyLong_FromLong(number)); - PyObject *res = PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, args); - if(!res) throw std::runtime_error("Call to fignum_exists() failed."); - - bool ret = PyObject_IsTrue(res); - Py_DECREF(res); - Py_DECREF(args); - - return ret; -} - -inline void figure_size(size_t w, size_t h) -{ - detail::_interpreter::get(); - - const size_t dpi = 100; - PyObject* size = PyTuple_New(2); - PyTuple_SetItem(size, 0, PyFloat_FromDouble((double)w / dpi)); - PyTuple_SetItem(size, 1, PyFloat_FromDouble((double)h / dpi)); - - PyObject* kwargs = PyDict_New(); - PyDict_SetItemString(kwargs, "figsize", size); - PyDict_SetItemString(kwargs, "dpi", PyLong_FromSize_t(dpi)); - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_figure, - detail::_interpreter::get().s_python_empty_tuple, kwargs); - - Py_DECREF(kwargs); - - if(!res) throw std::runtime_error("Call to figure_size() failed."); - Py_DECREF(res); -} - -inline void legend() -{ - detail::_interpreter::get(); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_legend, detail::_interpreter::get().s_python_empty_tuple); - if(!res) throw std::runtime_error("Call to legend() failed."); - - Py_DECREF(res); -} - -inline void legend(const std::map<std::string, std::string>& keywords) -{ - detail::_interpreter::get(); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) - { - PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_legend, detail::_interpreter::get().s_python_empty_tuple, kwargs); - if(!res) throw std::runtime_error("Call to legend() failed."); - - Py_DECREF(kwargs); - Py_DECREF(res); -} - -template<typename Numeric> -inline void set_aspect(Numeric ratio) -{ - detail::_interpreter::get(); - - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, PyFloat_FromDouble(ratio)); - PyObject* kwargs = PyDict_New(); - - PyObject *ax = - PyObject_CallObject(detail::_interpreter::get().s_python_function_gca, - detail::_interpreter::get().s_python_empty_tuple); - if (!ax) throw std::runtime_error("Call to gca() failed."); - Py_INCREF(ax); - - PyObject *set_aspect = PyObject_GetAttrString(ax, "set_aspect"); - if (!set_aspect) throw std::runtime_error("Attribute set_aspect not found."); - Py_INCREF(set_aspect); - - PyObject *res = PyObject_Call(set_aspect, args, kwargs); - if (!res) throw std::runtime_error("Call to set_aspect() failed."); - Py_DECREF(set_aspect); - - Py_DECREF(ax); - Py_DECREF(args); - Py_DECREF(kwargs); -} - -inline void set_aspect_equal() -{ - // expect ratio == "equal". Leaving error handling to matplotlib. - detail::_interpreter::get(); - - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, PyString_FromString("equal")); - PyObject* kwargs = PyDict_New(); - - PyObject *ax = - PyObject_CallObject(detail::_interpreter::get().s_python_function_gca, - detail::_interpreter::get().s_python_empty_tuple); - if (!ax) throw std::runtime_error("Call to gca() failed."); - Py_INCREF(ax); - - PyObject *set_aspect = PyObject_GetAttrString(ax, "set_aspect"); - if (!set_aspect) throw std::runtime_error("Attribute set_aspect not found."); - Py_INCREF(set_aspect); - - PyObject *res = PyObject_Call(set_aspect, args, kwargs); - if (!res) throw std::runtime_error("Call to set_aspect() failed."); - Py_DECREF(set_aspect); - - Py_DECREF(ax); - Py_DECREF(args); - Py_DECREF(kwargs); -} - -template<typename Numeric> -void ylim(Numeric left, Numeric right) -{ - detail::_interpreter::get(); - - PyObject* list = PyList_New(2); - PyList_SetItem(list, 0, PyFloat_FromDouble(left)); - PyList_SetItem(list, 1, PyFloat_FromDouble(right)); - - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, list); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args); - if(!res) throw std::runtime_error("Call to ylim() failed."); - - Py_DECREF(args); - Py_DECREF(res); -} - -template<typename Numeric> -void xlim(Numeric left, Numeric right) -{ - detail::_interpreter::get(); - - PyObject* list = PyList_New(2); - PyList_SetItem(list, 0, PyFloat_FromDouble(left)); - PyList_SetItem(list, 1, PyFloat_FromDouble(right)); - - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, list); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args); - if(!res) throw std::runtime_error("Call to xlim() failed."); - - Py_DECREF(args); - Py_DECREF(res); -} - - -inline std::array<double, 2> xlim() -{ - PyObject* args = PyTuple_New(0); - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args); - - if(!res) throw std::runtime_error("Call to xlim() failed."); - - Py_DECREF(res); - - PyObject* left = PyTuple_GetItem(res,0); - PyObject* right = PyTuple_GetItem(res,1); - return { PyFloat_AsDouble(left), PyFloat_AsDouble(right) }; -} - - -inline std::array<double, 2> ylim() -{ - PyObject* args = PyTuple_New(0); - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args); - - if(!res) throw std::runtime_error("Call to ylim() failed."); - - Py_DECREF(res); - - PyObject* left = PyTuple_GetItem(res,0); - PyObject* right = PyTuple_GetItem(res,1); - return { PyFloat_AsDouble(left), PyFloat_AsDouble(right) }; -} - -template<typename Numeric> -inline void xticks(const std::vector<Numeric> &ticks, const std::vector<std::string> &labels = {}, const std::map<std::string, std::string>& keywords = {}) -{ - assert(labels.size() == 0 || ticks.size() == labels.size()); - - detail::_interpreter::get(); - - // using numpy array - PyObject* ticksarray = detail::get_array(ticks); - - PyObject* args; - if(labels.size() == 0) { - // construct positional args - args = PyTuple_New(1); - PyTuple_SetItem(args, 0, ticksarray); - } else { - // make tuple of tick labels - PyObject* labelstuple = PyTuple_New(labels.size()); - for (size_t i = 0; i < labels.size(); i++) - PyTuple_SetItem(labelstuple, i, PyUnicode_FromString(labels[i].c_str())); - - // construct positional args - args = PyTuple_New(2); - PyTuple_SetItem(args, 0, ticksarray); - PyTuple_SetItem(args, 1, labelstuple); - } - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) - { - PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_xticks, args, kwargs); - - Py_DECREF(args); - Py_DECREF(kwargs); - if(!res) throw std::runtime_error("Call to xticks() failed"); - - Py_DECREF(res); -} - -template<typename Numeric> -inline void xticks(const std::vector<Numeric> &ticks, const std::map<std::string, std::string>& keywords) -{ - xticks(ticks, {}, keywords); -} - -template<typename Numeric> -inline void yticks(const std::vector<Numeric> &ticks, const std::vector<std::string> &labels = {}, const std::map<std::string, std::string>& keywords = {}) -{ - assert(labels.size() == 0 || ticks.size() == labels.size()); - - detail::_interpreter::get(); - - // using numpy array - PyObject* ticksarray = detail::get_array(ticks); - - PyObject* args; - if(labels.size() == 0) { - // construct positional args - args = PyTuple_New(1); - PyTuple_SetItem(args, 0, ticksarray); - } else { - // make tuple of tick labels - PyObject* labelstuple = PyTuple_New(labels.size()); - for (size_t i = 0; i < labels.size(); i++) - PyTuple_SetItem(labelstuple, i, PyUnicode_FromString(labels[i].c_str())); - - // construct positional args - args = PyTuple_New(2); - PyTuple_SetItem(args, 0, ticksarray); - PyTuple_SetItem(args, 1, labelstuple); - } - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) - { - PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_yticks, args, kwargs); - - Py_DECREF(args); - Py_DECREF(kwargs); - if(!res) throw std::runtime_error("Call to yticks() failed"); - - Py_DECREF(res); -} - -template<typename Numeric> -inline void yticks(const std::vector<Numeric> &ticks, const std::map<std::string, std::string>& keywords) -{ - yticks(ticks, {}, keywords); -} - -template <typename Numeric> inline void margins(Numeric margin) -{ - // construct positional args - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, PyFloat_FromDouble(margin)); - - PyObject* res = - PyObject_CallObject(detail::_interpreter::get().s_python_function_margins, args); - if (!res) - throw std::runtime_error("Call to margins() failed."); - - Py_DECREF(args); - Py_DECREF(res); -} - -template <typename Numeric> inline void margins(Numeric margin_x, Numeric margin_y) -{ - // construct positional args - PyObject* args = PyTuple_New(2); - PyTuple_SetItem(args, 0, PyFloat_FromDouble(margin_x)); - PyTuple_SetItem(args, 1, PyFloat_FromDouble(margin_y)); - - PyObject* res = - PyObject_CallObject(detail::_interpreter::get().s_python_function_margins, args); - if (!res) - throw std::runtime_error("Call to margins() failed."); - - Py_DECREF(args); - Py_DECREF(res); -} - - -inline void tick_params(const std::map<std::string, std::string>& keywords, const std::string axis = "both") -{ - detail::_interpreter::get(); - - // construct positional args - PyObject* args; - args = PyTuple_New(1); - PyTuple_SetItem(args, 0, PyString_FromString(axis.c_str())); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) - { - PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); - } - - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_tick_params, args, kwargs); - - Py_DECREF(args); - Py_DECREF(kwargs); - if (!res) throw std::runtime_error("Call to tick_params() failed"); - - Py_DECREF(res); -} - -inline void subplot(long nrows, long ncols, long plot_number) -{ - detail::_interpreter::get(); - - // construct positional args - PyObject* args = PyTuple_New(3); - PyTuple_SetItem(args, 0, PyFloat_FromDouble(nrows)); - PyTuple_SetItem(args, 1, PyFloat_FromDouble(ncols)); - PyTuple_SetItem(args, 2, PyFloat_FromDouble(plot_number)); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_subplot, args); - if(!res) throw std::runtime_error("Call to subplot() failed."); - - Py_DECREF(args); - Py_DECREF(res); -} - -inline void subplot2grid(long nrows, long ncols, long rowid=0, long colid=0, long rowspan=1, long colspan=1) -{ - detail::_interpreter::get(); - - PyObject* shape = PyTuple_New(2); - PyTuple_SetItem(shape, 0, PyLong_FromLong(nrows)); - PyTuple_SetItem(shape, 1, PyLong_FromLong(ncols)); - - PyObject* loc = PyTuple_New(2); - PyTuple_SetItem(loc, 0, PyLong_FromLong(rowid)); - PyTuple_SetItem(loc, 1, PyLong_FromLong(colid)); - - PyObject* args = PyTuple_New(4); - PyTuple_SetItem(args, 0, shape); - PyTuple_SetItem(args, 1, loc); - PyTuple_SetItem(args, 2, PyLong_FromLong(rowspan)); - PyTuple_SetItem(args, 3, PyLong_FromLong(colspan)); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_subplot2grid, args); - if(!res) throw std::runtime_error("Call to subplot2grid() failed."); - - Py_DECREF(shape); - Py_DECREF(loc); - Py_DECREF(args); - Py_DECREF(res); -} - -inline void title(const std::string &titlestr, const std::map<std::string, std::string> &keywords = {}) -{ - detail::_interpreter::get(); - - PyObject* pytitlestr = PyString_FromString(titlestr.c_str()); - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, pytitlestr); - - PyObject* kwargs = PyDict_New(); - for (auto it = keywords.begin(); it != keywords.end(); ++it) { - PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_title, args, kwargs); - if(!res) throw std::runtime_error("Call to title() failed."); - - Py_DECREF(args); - Py_DECREF(kwargs); - Py_DECREF(res); -} - -inline void suptitle(const std::string &suptitlestr, const std::map<std::string, std::string> &keywords = {}) -{ - detail::_interpreter::get(); - - PyObject* pysuptitlestr = PyString_FromString(suptitlestr.c_str()); - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, pysuptitlestr); - - PyObject* kwargs = PyDict_New(); - for (auto it = keywords.begin(); it != keywords.end(); ++it) { - PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_suptitle, args, kwargs); - if(!res) throw std::runtime_error("Call to suptitle() failed."); - - Py_DECREF(args); - Py_DECREF(kwargs); - Py_DECREF(res); -} - -inline void axis(const std::string &axisstr) -{ - detail::_interpreter::get(); - - PyObject* str = PyString_FromString(axisstr.c_str()); - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, str); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_axis, args); - if(!res) throw std::runtime_error("Call to title() failed."); - - Py_DECREF(args); - Py_DECREF(res); -} - -inline void axhline(double y, double xmin = 0., double xmax = 1., const std::map<std::string, std::string>& keywords = std::map<std::string, std::string>()) -{ - detail::_interpreter::get(); - - // construct positional args - PyObject* args = PyTuple_New(3); - PyTuple_SetItem(args, 0, PyFloat_FromDouble(y)); - PyTuple_SetItem(args, 1, PyFloat_FromDouble(xmin)); - PyTuple_SetItem(args, 2, PyFloat_FromDouble(xmax)); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) - { - PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axhline, args, kwargs); - - Py_DECREF(args); - Py_DECREF(kwargs); - - if(res) Py_DECREF(res); -} - -inline void axvline(double x, double ymin = 0., double ymax = 1., const std::map<std::string, std::string>& keywords = std::map<std::string, std::string>()) -{ - detail::_interpreter::get(); - - // construct positional args - PyObject* args = PyTuple_New(3); - PyTuple_SetItem(args, 0, PyFloat_FromDouble(x)); - PyTuple_SetItem(args, 1, PyFloat_FromDouble(ymin)); - PyTuple_SetItem(args, 2, PyFloat_FromDouble(ymax)); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) - { - PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axvline, args, kwargs); - - Py_DECREF(args); - Py_DECREF(kwargs); - - if(res) Py_DECREF(res); -} - -inline void axvspan(double xmin, double xmax, double ymin = 0., double ymax = 1., const std::map<std::string, std::string>& keywords = std::map<std::string, std::string>()) -{ - // construct positional args - PyObject* args = PyTuple_New(4); - PyTuple_SetItem(args, 0, PyFloat_FromDouble(xmin)); - PyTuple_SetItem(args, 1, PyFloat_FromDouble(xmax)); - PyTuple_SetItem(args, 2, PyFloat_FromDouble(ymin)); - PyTuple_SetItem(args, 3, PyFloat_FromDouble(ymax)); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for (auto it = keywords.begin(); it != keywords.end(); ++it) { - if (it->first == "linewidth" || it->first == "alpha") { - PyDict_SetItemString(kwargs, it->first.c_str(), - PyFloat_FromDouble(std::stod(it->second))); - } else { - PyDict_SetItemString(kwargs, it->first.c_str(), - PyString_FromString(it->second.c_str())); - } - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axvspan, args, kwargs); - Py_DECREF(args); - Py_DECREF(kwargs); - - if(res) Py_DECREF(res); -} - -inline void xlabel(const std::string &str, const std::map<std::string, std::string> &keywords = {}) -{ - detail::_interpreter::get(); - - PyObject* pystr = PyString_FromString(str.c_str()); - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, pystr); - - PyObject* kwargs = PyDict_New(); - for (auto it = keywords.begin(); it != keywords.end(); ++it) { - PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_xlabel, args, kwargs); - if(!res) throw std::runtime_error("Call to xlabel() failed."); - - Py_DECREF(args); - Py_DECREF(kwargs); - Py_DECREF(res); -} - -inline void ylabel(const std::string &str, const std::map<std::string, std::string>& keywords = {}) -{ - detail::_interpreter::get(); - - PyObject* pystr = PyString_FromString(str.c_str()); - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, pystr); - - PyObject* kwargs = PyDict_New(); - for (auto it = keywords.begin(); it != keywords.end(); ++it) { - PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_ylabel, args, kwargs); - if(!res) throw std::runtime_error("Call to ylabel() failed."); - - Py_DECREF(args); - Py_DECREF(kwargs); - Py_DECREF(res); -} - -inline void set_zlabel(const std::string &str, const std::map<std::string, std::string>& keywords = {}) -{ - detail::_interpreter::get(); - - // Same as with plot_surface: We lazily load the modules here the first time - // this function is called because I'm not sure that we can assume "matplotlib - // installed" implies "mpl_toolkits installed" on all platforms, and we don't - // want to require it for people who don't need 3d plots. - static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; - if (!mpl_toolkitsmod) { - PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); - PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); - if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } - - mpl_toolkitsmod = PyImport_Import(mpl_toolkits); - Py_DECREF(mpl_toolkits); - if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } - - axis3dmod = PyImport_Import(axis3d); - Py_DECREF(axis3d); - if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } - } - - PyObject* pystr = PyString_FromString(str.c_str()); - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, pystr); - - PyObject* kwargs = PyDict_New(); - for (auto it = keywords.begin(); it != keywords.end(); ++it) { - PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); - } - - PyObject *ax = - PyObject_CallObject(detail::_interpreter::get().s_python_function_gca, - detail::_interpreter::get().s_python_empty_tuple); - if (!ax) throw std::runtime_error("Call to gca() failed."); - Py_INCREF(ax); - - PyObject *zlabel = PyObject_GetAttrString(ax, "set_zlabel"); - if (!zlabel) throw std::runtime_error("Attribute set_zlabel not found."); - Py_INCREF(zlabel); - - PyObject *res = PyObject_Call(zlabel, args, kwargs); - if (!res) throw std::runtime_error("Call to set_zlabel() failed."); - Py_DECREF(zlabel); - - Py_DECREF(ax); - Py_DECREF(args); - Py_DECREF(kwargs); - if (res) Py_DECREF(res); -} - -inline void grid(bool flag) -{ - detail::_interpreter::get(); - - PyObject* pyflag = flag ? Py_True : Py_False; - Py_INCREF(pyflag); - - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, pyflag); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_grid, args); - if(!res) throw std::runtime_error("Call to grid() failed."); - - Py_DECREF(args); - Py_DECREF(res); -} - -inline void show(const bool block = true) -{ - detail::_interpreter::get(); - - PyObject* res; - if(block) - { - res = PyObject_CallObject( - detail::_interpreter::get().s_python_function_show, - detail::_interpreter::get().s_python_empty_tuple); - } - else - { - PyObject *kwargs = PyDict_New(); - PyDict_SetItemString(kwargs, "block", Py_False); - res = PyObject_Call( detail::_interpreter::get().s_python_function_show, detail::_interpreter::get().s_python_empty_tuple, kwargs); - Py_DECREF(kwargs); - } - - - if (!res) throw std::runtime_error("Call to show() failed."); - - Py_DECREF(res); -} - -inline void close() -{ - detail::_interpreter::get(); - - PyObject* res = PyObject_CallObject( - detail::_interpreter::get().s_python_function_close, - detail::_interpreter::get().s_python_empty_tuple); - - if (!res) throw std::runtime_error("Call to close() failed."); - - Py_DECREF(res); -} - -inline void xkcd() { - detail::_interpreter::get(); - - PyObject* res; - PyObject *kwargs = PyDict_New(); - - res = PyObject_Call(detail::_interpreter::get().s_python_function_xkcd, - detail::_interpreter::get().s_python_empty_tuple, kwargs); - - Py_DECREF(kwargs); - - if (!res) - throw std::runtime_error("Call to show() failed."); - - Py_DECREF(res); -} - -inline void draw() -{ - detail::_interpreter::get(); - - PyObject* res = PyObject_CallObject( - detail::_interpreter::get().s_python_function_draw, - detail::_interpreter::get().s_python_empty_tuple); - - if (!res) throw std::runtime_error("Call to draw() failed."); - - Py_DECREF(res); -} - -template<typename Numeric> -inline void pause(Numeric interval) -{ - detail::_interpreter::get(); - - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, PyFloat_FromDouble(interval)); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_pause, args); - if(!res) throw std::runtime_error("Call to pause() failed."); - - Py_DECREF(args); - Py_DECREF(res); -} - -inline void save(const std::string& filename, const int dpi=0) -{ - detail::_interpreter::get(); - - PyObject* pyfilename = PyString_FromString(filename.c_str()); - - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, pyfilename); - - PyObject* kwargs = PyDict_New(); - - if(dpi > 0) - { - PyDict_SetItemString(kwargs, "dpi", PyLong_FromLong(dpi)); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_save, args, kwargs); - if (!res) throw std::runtime_error("Call to save() failed."); - - Py_DECREF(args); - Py_DECREF(kwargs); - Py_DECREF(res); -} - -inline void rcparams(const std::map<std::string, std::string>& keywords = {}) { - detail::_interpreter::get(); - PyObject* args = PyTuple_New(0); - PyObject* kwargs = PyDict_New(); - for (auto it = keywords.begin(); it != keywords.end(); ++it) { - if ("text.usetex" == it->first) - PyDict_SetItemString(kwargs, it->first.c_str(), PyLong_FromLong(std::stoi(it->second.c_str()))); - else PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); - } - - PyObject * update = PyObject_GetAttrString(detail::_interpreter::get().s_python_function_rcparams, "update"); - PyObject * res = PyObject_Call(update, args, kwargs); - if(!res) throw std::runtime_error("Call to rcParams.update() failed."); - Py_DECREF(args); - Py_DECREF(kwargs); - Py_DECREF(update); - Py_DECREF(res); -} - -inline void clf() { - detail::_interpreter::get(); - - PyObject *res = PyObject_CallObject( - detail::_interpreter::get().s_python_function_clf, - detail::_interpreter::get().s_python_empty_tuple); - - if (!res) throw std::runtime_error("Call to clf() failed."); - - Py_DECREF(res); -} - -inline void cla() { - detail::_interpreter::get(); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_cla, - detail::_interpreter::get().s_python_empty_tuple); - - if (!res) - throw std::runtime_error("Call to cla() failed."); - - Py_DECREF(res); -} - -inline void ion() { - detail::_interpreter::get(); - - PyObject *res = PyObject_CallObject( - detail::_interpreter::get().s_python_function_ion, - detail::_interpreter::get().s_python_empty_tuple); - - if (!res) throw std::runtime_error("Call to ion() failed."); - - Py_DECREF(res); -} - -inline std::vector<std::array<double, 2>> ginput(const int numClicks = 1, const std::map<std::string, std::string>& keywords = {}) -{ - detail::_interpreter::get(); - - PyObject *args = PyTuple_New(1); - PyTuple_SetItem(args, 0, PyLong_FromLong(numClicks)); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) - { - PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call( - detail::_interpreter::get().s_python_function_ginput, args, kwargs); - - Py_DECREF(kwargs); - Py_DECREF(args); - if (!res) throw std::runtime_error("Call to ginput() failed."); - - const size_t len = PyList_Size(res); - std::vector<std::array<double, 2>> out; - out.reserve(len); - for (size_t i = 0; i < len; i++) { - PyObject *current = PyList_GetItem(res, i); - std::array<double, 2> position; - position[0] = PyFloat_AsDouble(PyTuple_GetItem(current, 0)); - position[1] = PyFloat_AsDouble(PyTuple_GetItem(current, 1)); - out.push_back(position); - } - Py_DECREF(res); - - return out; -} - -// Actually, is there any reason not to call this automatically for every plot? -inline void tight_layout() { - detail::_interpreter::get(); - - PyObject *res = PyObject_CallObject( - detail::_interpreter::get().s_python_function_tight_layout, - detail::_interpreter::get().s_python_empty_tuple); - - if (!res) throw std::runtime_error("Call to tight_layout() failed."); - - Py_DECREF(res); -} - -// Support for variadic plot() and initializer lists: - -namespace detail { - -template<typename T> -using is_function = typename std::is_function<std::remove_pointer<std::remove_reference<T>>>::type; - -template<bool obj, typename T> -struct is_callable_impl; - -template<typename T> -struct is_callable_impl<false, T> -{ - typedef is_function<T> type; -}; // a non-object is callable iff it is a function - -template<typename T> -struct is_callable_impl<true, T> -{ - struct Fallback { void operator()(); }; - struct Derived : T, Fallback { }; - - template<typename U, U> struct Check; - - template<typename U> - static std::true_type test( ... ); // use a variadic function to make sure (1) it accepts everything and (2) its always the worst match - - template<typename U> - static std::false_type test( Check<void(Fallback::*)(), &U::operator()>* ); - -public: - typedef decltype(test<Derived>(nullptr)) type; - typedef decltype(&Fallback::operator()) dtype; - static constexpr bool value = type::value; -}; // an object is callable iff it defines operator() - -template<typename T> -struct is_callable -{ - // dispatch to is_callable_impl<true, T> or is_callable_impl<false, T> depending on whether T is of class type or not - typedef typename is_callable_impl<std::is_class<T>::value, T>::type type; -}; - -template<typename IsYDataCallable> -struct plot_impl { }; - -template<> -struct plot_impl<std::false_type> -{ - template<typename IterableX, typename IterableY> - bool operator()(const IterableX& x, const IterableY& y, const std::string& format) - { - detail::_interpreter::get(); - - // 2-phase lookup for distance, begin, end - using std::distance; - using std::begin; - using std::end; - - auto xs = distance(begin(x), end(x)); - auto ys = distance(begin(y), end(y)); - assert(xs == ys && "x and y data must have the same number of elements!"); - - PyObject* xlist = PyList_New(xs); - PyObject* ylist = PyList_New(ys); - PyObject* pystring = PyString_FromString(format.c_str()); - - auto itx = begin(x), ity = begin(y); - for(size_t i = 0; i < xs; ++i) { - PyList_SetItem(xlist, i, PyFloat_FromDouble(*itx++)); - PyList_SetItem(ylist, i, PyFloat_FromDouble(*ity++)); - } - - PyObject* plot_args = PyTuple_New(3); - PyTuple_SetItem(plot_args, 0, xlist); - PyTuple_SetItem(plot_args, 1, ylist); - PyTuple_SetItem(plot_args, 2, pystring); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args); - - Py_DECREF(plot_args); - if(res) Py_DECREF(res); - - return res; - } -}; - -template<> -struct plot_impl<std::true_type> -{ - template<typename Iterable, typename Callable> - bool operator()(const Iterable& ticks, const Callable& f, const std::string& format) - { - if(begin(ticks) == end(ticks)) return true; - - // We could use additional meta-programming to deduce the correct element type of y, - // but all values have to be convertible to double anyways - std::vector<double> y; - for(auto x : ticks) y.push_back(f(x)); - return plot_impl<std::false_type>()(ticks,y,format); - } -}; - -} // end namespace detail - -// recursion stop for the above -template<typename... Args> -bool plot() { return true; } - -template<typename A, typename B, typename... Args> -bool plot(const A& a, const B& b, const std::string& format, Args... args) -{ - return detail::plot_impl<typename detail::is_callable<B>::type>()(a,b,format) && plot(args...); -} - -/* - * This group of plot() functions is needed to support initializer lists, i.e. calling - * plot( {1,2,3,4} ) - */ -inline bool plot(const std::vector<double>& x, const std::vector<double>& y, const std::string& format = "") { - return plot<double,double>(x,y,format); -} - -inline bool plot(const std::vector<double>& y, const std::string& format = "") { - return plot<double>(y,format); -} - -inline bool plot(const std::vector<double>& x, const std::vector<double>& y, const std::map<std::string, std::string>& keywords) { - return plot<double>(x,y,keywords); -} - -/* - * This class allows dynamic plots, ie changing the plotted data without clearing and re-plotting - */ -class Plot -{ -public: - // default initialization with plot label, some data and format - template<typename Numeric> - Plot(const std::string& name, const std::vector<Numeric>& x, const std::vector<Numeric>& y, const std::string& format = "") { - detail::_interpreter::get(); - - assert(x.size() == y.size()); - - PyObject* kwargs = PyDict_New(); - if(name != "") - PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); - - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - - PyObject* pystring = PyString_FromString(format.c_str()); - - PyObject* plot_args = PyTuple_New(3); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - PyTuple_SetItem(plot_args, 2, pystring); - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs); - - Py_DECREF(kwargs); - Py_DECREF(plot_args); - - if(res) - { - line= PyList_GetItem(res, 0); - - if(line) - set_data_fct = PyObject_GetAttrString(line,"set_data"); - else - Py_DECREF(line); - Py_DECREF(res); - } - } - - // shorter initialization with name or format only - // basically calls line, = plot([], []) - Plot(const std::string& name = "", const std::string& format = "") - : Plot(name, std::vector<double>(), std::vector<double>(), format) {} - - template<typename Numeric> - bool update(const std::vector<Numeric>& x, const std::vector<Numeric>& y) { - assert(x.size() == y.size()); - if(set_data_fct) - { - PyObject* xarray = detail::get_array(x); - PyObject* yarray = detail::get_array(y); - - PyObject* plot_args = PyTuple_New(2); - PyTuple_SetItem(plot_args, 0, xarray); - PyTuple_SetItem(plot_args, 1, yarray); - - PyObject* res = PyObject_CallObject(set_data_fct, plot_args); - if (res) Py_DECREF(res); - return res; - } - return false; - } - - // clears the plot but keep it available - bool clear() { - return update(std::vector<double>(), std::vector<double>()); - } - - // definitely remove this line - void remove() { - if(line) - { - auto remove_fct = PyObject_GetAttrString(line,"remove"); - PyObject* args = PyTuple_New(0); - PyObject* res = PyObject_CallObject(remove_fct, args); - if (res) Py_DECREF(res); - } - decref(); - } - - ~Plot() { - decref(); - } -private: - - void decref() { - if(line) - Py_DECREF(line); - if(set_data_fct) - Py_DECREF(set_data_fct); - } - - - PyObject* line = nullptr; - PyObject* set_data_fct = nullptr; -}; - -} // end namespace matplotlibcpp -- GitLab