From a114aebe1b14dc9b123a8e570e8b4c04529743dd Mon Sep 17 00:00:00 2001
From: joanvallve <jvallve@iri.upc.edu>
Date: Mon, 10 Jun 2024 13:04:04 +0200
Subject: [PATCH] little work on gtest icp

---
 test/gtest/CMakeLists.txt |    4 +-
 test/gtest_icp.cpp        |   92 +-
 test/matplotlibcpp.h      | 3007 -------------------------------------
 3 files changed, 8 insertions(+), 3095 deletions(-)
 delete mode 100644 test/matplotlibcpp.h

diff --git a/test/gtest/CMakeLists.txt b/test/gtest/CMakeLists.txt
index 3b52f51..68dd3a7 100644
--- a/test/gtest/CMakeLists.txt
+++ b/test/gtest/CMakeLists.txt
@@ -1,11 +1,13 @@
 include(FetchContent)
 
+SET(BUILD_GMOCK OFF)  # Disable gmock
+SET(INSTALL_GTEST OFF) # Disable installation of googletest
+
 FetchContent_Declare(
   googletest
   GIT_REPOSITORY https://github.com/google/googletest.git 
   GIT_TAG main)
 
-SET(INSTALL_GTEST OFF) # Disable installation of googletest
 FetchContent_MakeAvailable(googletest)
 
 function(add_gtest target)
diff --git a/test/gtest_icp.cpp b/test/gtest_icp.cpp
index e3ec9b4..e398677 100644
--- a/test/gtest_icp.cpp
+++ b/test/gtest_icp.cpp
@@ -23,12 +23,6 @@
 #include "laser_scan_utils/laser_scan.h"
 #include "laser_scan_utils/icp.h"
 
-#define TEST_PLOTS false
-#if TEST_PLOTS
-#include "matplotlibcpp.h"
-namespace plt = matplotlibcpp;
-#endif 
-
 using namespace laserscanutils;
 
 const Eigen::Vector2d A = Eigen::Vector2d::Zero();
@@ -37,10 +31,8 @@ const Eigen::Vector2d C = (Eigen::Vector2d() << 30, 0).finished();
 const Eigen::Vector2d CB = B-C;
 double AB_ang = atan2((A-B).norm(),(A-C).norm());
 double dist_min = 2;
-int color_id=0;
-const std::vector<std::string> colors({"b","r","g","c","m","y"});
 
-/* Synthetic scans are created from this simple scenario with three orthogonal walls:
+/* Synthetic scans are created from this simple scenario with three vertical walls:
  *
  *    B  
  *    +
@@ -151,15 +143,6 @@ LaserScan simulateScan(const Eigen::Vector3d& laser_pose, const LaserScanParams&
     }
   }
 
-  // // print ranges
-  // std::cout << "Scan:" << std::endl;
-  // std::cout << " angle_min: " << params.angle_min_ << std::endl;
-  // std::cout << " angle_step_: " << params.angle_step_ << std::endl;
-  // std::cout << " ranges: ";
-  // for (auto range : scan.ranges_raw_)
-  //   std::cout << range << ", ";
-  // std::cout << std::endl;
-
   return scan;
 };
 
@@ -172,19 +155,14 @@ void generateRandomProblem(Eigen::Vector3d& pose_ref,
                            double perturbation = 1)
 {
   pose_ref = generateRandomPoseInsideTriangle();
-  pose_d = Eigen::Vector3d::Random() * perturbation;
-  while (pose_d(2) > M_PI)
-    pose_d(2) -= 2*M_PI;
-  while (pose_d(2) <= -M_PI)
-    pose_d(2) += 2*M_PI;
-  pose_tar.head<2>() = pose_ref.head<2>() + Eigen::Rotation2Dd(pose_ref(2)) * pose_d.head<2>();
-  pose_tar(2) = pose_ref(2) + pose_d(2);
-  while (not insideTriangle(pose_tar))
+  do
   {
-    pose_d = Eigen::Vector3d::Random();
+    pose_d = Eigen::Vector3d::Random() * perturbation;
+    pose_d(2) = pi2pi(pose_d(2));
     pose_tar.head<2>() = pose_ref.head<2>() + Eigen::Rotation2Dd(pose_ref(2)) * pose_d.head<2>();
     pose_tar(2) = pose_ref(2) + pose_d(2);
   }
+  while (not insideTriangle(pose_tar));
 
   scan_ref = simulateScan(pose_ref, scan_params);
   scan_tar = simulateScan(pose_tar, scan_params);
@@ -204,53 +182,9 @@ LaserScanParams generateLaserScanParams(double angle_min_deg, double angle_step_
   scan_params.range_std_dev_ = 0;
   scan_params.angle_std_dev_ = 0;
 
-  //scan_params.print();
   return scan_params;
 }
 
-void initPlot()
-{
-#if TEST_PLOTS
-  plt::figure();
-#endif
-}
-
-void showPlot()
-{
-#if TEST_PLOTS
-  plt::show();
-#endif
-}
-
-void plotScan(const LaserScan& scan, const LaserScanParams& scan_params, const Eigen::Vector3d pose, bool fig_created = false)
-{
-#if TEST_PLOTS
-  // Create figure
-  if (not fig_created)
-    plt::figure();
-  plt::axis("scaled");
-  
-  std::vector<double> x(scan.ranges_raw_.size());
-  std::vector<double> y(scan.ranges_raw_.size());
-  for (auto i = 0; i < scan.ranges_raw_.size(); i++)
-  {
-    x.at(i) = pose(0) + cos(scan_params.angle_min_ + i*scan_params.angle_step_ + pose(2)) * scan.ranges_raw_.at(i);
-    y.at(i) = pose(1) + sin(scan_params.angle_min_ + i*scan_params.angle_step_ + pose(2)) * scan.ranges_raw_.at(i);
-  }
-  plt::plot(x, y,"."+colors.at(color_id));
-
-  std::vector<double> pose_x{pose(0)-sin(pose(2)), pose(0), pose(0)+cos(pose(2))};
-  std::vector<double> pose_y{pose(1)+cos(pose(2)), pose(1), pose(1)+sin(pose(2))};
-  plt::plot(pose_x, pose_y,colors.at(color_id)+"-");
-
-  if (not fig_created)
-    plt::show();  
-
-  color_id++;
-  if (color_id >= colors.size())
-    color_id = 0;
-#endif
-}
 
 ///////////////////////////////////////////////////////////////////////////////////////////////
 //////////////////////////////////////////// TESTS ////////////////////////////////////////////
@@ -310,8 +244,6 @@ TEST(TestIcp, TestGenerateRandomPose)
   // 0-2M_PI (5 degrees step)
   LaserScanParams scan_params = generateLaserScanParams(-180,1);
 
-  initPlot();
-
   // 100 random poses and scans
   for (auto i=0; i < 100; i++)
   {
@@ -319,11 +251,7 @@ TEST(TestIcp, TestGenerateRandomPose)
     ASSERT_TRUE(insideTriangle(laser_pose));
     
     auto scan = simulateScan(laser_pose, scan_params);
-
-    plotScan(scan, scan_params, laser_pose, true);
   }
-
-  showPlot();
 }
 
 TEST(TestIcp, TestIcpSame1)
@@ -445,11 +373,6 @@ TEST(TestIcp, TestIcp1)
 
     ASSERT_TRUE(icp_output.valid);
     EXPECT_MATRIX_APPROX(icp_output.res_transf, pose_d, 1e-1);
-
-    initPlot();
-    plotScan(scan_ref,scan_params,pose_ref,true);
-    plotScan(scan_tar,scan_params,pose_tar,true);
-    showPlot();
   }
 }
 
@@ -482,11 +405,6 @@ TEST(TestIcp, TestIcp10)
 
     ASSERT_TRUE(icp_output.valid);
     EXPECT_MATRIX_APPROX(icp_output.res_transf, pose_d, 1e-1);
-
-    initPlot();
-    plotScan(scan_ref,scan_params,pose_ref,true);
-    plotScan(scan_tar,scan_params,pose_tar,true);
-    showPlot();
   }
 }//*/
 
diff --git a/test/matplotlibcpp.h b/test/matplotlibcpp.h
deleted file mode 100644
index c1b2d9b..0000000
--- a/test/matplotlibcpp.h
+++ /dev/null
@@ -1,3007 +0,0 @@
-//--------LICENSE_START--------
-//
-// Copyright (C) 2020,2021,2022,2023,2024 Institut de Robòtica i Informàtica Industrial, CSIC-UPC.
-// Authors: Joan Vallvé Navarro (jvallve@iri.upc.edu)
-// All rights reserved.
-//
-// This file is part of laser_scan_utils
-// laser_scan_utils is free software: you can redistribute it and/or modify
-// it under the terms of the GNU Lesser General Public License as published by
-// the Free Software Foundation, either version 3 of the License, or
-// at your option) any later version.
-//
-// This program is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-// GNU Lesser General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public License
-// along with this program.  If not, see <http://www.gnu.org/licenses/>.
-//
-//--------LICENSE_END--------
-#pragma once
-
-// Python headers must be included before any system headers, since
-// they define _POSIX_C_SOURCE
-#include <Python.h>
-
-#include <vector>
-#include <map>
-#include <array>
-#include <numeric>
-#include <algorithm>
-#include <stdexcept>
-#include <iostream>
-#include <cstdint> // <cstdint> requires c++11 support
-#include <functional>
-#include <string> // std::stod
-
-#ifndef WITHOUT_NUMPY
-#  define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
-#  include <numpy/arrayobject.h>
-
-#  ifdef WITH_OPENCV
-#    include <opencv2/opencv.hpp>
-#  endif // WITH_OPENCV
-
-/*
- * A bunch of constants were removed in OpenCV 4 in favour of enum classes, so
- * define the ones we need here.
- */
-#  if CV_MAJOR_VERSION > 3
-#    define CV_BGR2RGB cv::COLOR_BGR2RGB
-#    define CV_BGRA2RGBA cv::COLOR_BGRA2RGBA
-#  endif
-#endif // WITHOUT_NUMPY
-
-#if PY_MAJOR_VERSION >= 3
-#  define PyString_FromString PyUnicode_FromString
-#  define PyInt_FromLong PyLong_FromLong
-#  define PyString_FromString PyUnicode_FromString
-#endif
-
-
-namespace matplotlibcpp {
-namespace detail {
-
-static std::string s_backend;
-
-struct _interpreter {
-    PyObject* s_python_function_arrow;
-    PyObject *s_python_function_show;
-    PyObject *s_python_function_close;
-    PyObject *s_python_function_draw;
-    PyObject *s_python_function_pause;
-    PyObject *s_python_function_save;
-    PyObject *s_python_function_figure;
-    PyObject *s_python_function_fignum_exists;
-    PyObject *s_python_function_plot;
-    PyObject *s_python_function_quiver;
-    PyObject* s_python_function_contour;
-    PyObject *s_python_function_semilogx;
-    PyObject *s_python_function_semilogy;
-    PyObject *s_python_function_loglog;
-    PyObject *s_python_function_fill;
-    PyObject *s_python_function_fill_between;
-    PyObject *s_python_function_hist;
-    PyObject *s_python_function_imshow;
-    PyObject *s_python_function_scatter;
-    PyObject *s_python_function_boxplot;
-    PyObject *s_python_function_subplot;
-    PyObject *s_python_function_subplot2grid;
-    PyObject *s_python_function_legend;
-    PyObject *s_python_function_xlim;
-    PyObject *s_python_function_ion;
-    PyObject *s_python_function_ginput;
-    PyObject *s_python_function_ylim;
-    PyObject *s_python_function_title;
-    PyObject *s_python_function_axis;
-    PyObject *s_python_function_axhline;
-    PyObject *s_python_function_axvline;
-    PyObject *s_python_function_axvspan;
-    PyObject *s_python_function_xlabel;
-    PyObject *s_python_function_ylabel;
-    PyObject *s_python_function_gca;
-    PyObject *s_python_function_xticks;
-    PyObject *s_python_function_yticks;
-    PyObject* s_python_function_margins;
-    PyObject *s_python_function_tick_params;
-    PyObject *s_python_function_grid;
-    PyObject* s_python_function_cla;
-    PyObject *s_python_function_clf;
-    PyObject *s_python_function_errorbar;
-    PyObject *s_python_function_annotate;
-    PyObject *s_python_function_tight_layout;
-    PyObject *s_python_colormap;
-    PyObject *s_python_empty_tuple;
-    PyObject *s_python_function_stem;
-    PyObject *s_python_function_xkcd;
-    PyObject *s_python_function_text;
-    PyObject *s_python_function_suptitle;
-    PyObject *s_python_function_bar;
-    PyObject *s_python_function_barh;
-    PyObject *s_python_function_colorbar;
-    PyObject *s_python_function_subplots_adjust;
-    PyObject *s_python_function_rcparams;
-    PyObject *s_python_function_spy;
-
-    /* For now, _interpreter is implemented as a singleton since its currently not possible to have
-       multiple independent embedded python interpreters without patching the python source code
-       or starting a separate process for each. [1]
-       Furthermore, many python objects expect that they are destructed in the same thread as they
-       were constructed. [2] So for advanced usage, a `kill()` function is provided so that library
-       users can manually ensure that the interpreter is constructed and destroyed within the
-       same thread.
-
-         1: http://bytes.com/topic/python/answers/793370-multiple-independent-python-interpreters-c-c-program
-         2: https://github.com/lava/matplotlib-cpp/pull/202#issue-436220256
-       */
-
-    static _interpreter& get() {
-        return interkeeper(false);
-    }
-
-    static _interpreter& kill() {
-        return interkeeper(true);
-    }
-
-    // Stores the actual singleton object referenced by `get()` and `kill()`.
-    static _interpreter& interkeeper(bool should_kill) {
-        static _interpreter ctx;
-        if (should_kill)
-            ctx.~_interpreter();
-        return ctx;
-    }
-
-    PyObject* safe_import(PyObject* module, std::string fname) {
-        PyObject* fn = PyObject_GetAttrString(module, fname.c_str());
-
-        if (!fn)
-            throw std::runtime_error(std::string("Couldn't find required function: ") + fname);
-
-        if (!PyFunction_Check(fn))
-            throw std::runtime_error(fname + std::string(" is unexpectedly not a PyFunction."));
-
-        return fn;
-    }
-
-private:
-
-#ifndef WITHOUT_NUMPY
-#  if PY_MAJOR_VERSION >= 3
-
-    void *import_numpy() {
-        import_array(); // initialize C-API
-        return NULL;
-    }
-
-#  else
-
-    void import_numpy() {
-        import_array(); // initialize C-API
-    }
-
-#  endif
-#endif
-
-    _interpreter() {
-
-        // optional but recommended
-#if PY_MAJOR_VERSION >= 3
-        wchar_t name[] = L"plotting";
-#else
-        char name[] = "plotting";
-#endif
-        Py_SetProgramName(name);
-        Py_Initialize();
-
-        wchar_t const *dummy_args[] = {L"Python", NULL};  // const is needed because literals must not be modified
-        wchar_t const **argv = dummy_args;
-        int             argc = sizeof(dummy_args)/sizeof(dummy_args[0])-1;
-
-#if PY_MAJOR_VERSION >= 3
-        PySys_SetArgv(argc, const_cast<wchar_t **>(argv));
-#else
-        PySys_SetArgv(argc, (char **)(argv));
-#endif
-
-#ifndef WITHOUT_NUMPY
-        import_numpy(); // initialize numpy C-API
-#endif
-
-        PyObject* matplotlibname = PyString_FromString("matplotlib");
-        PyObject* pyplotname = PyString_FromString("matplotlib.pyplot");
-        PyObject* cmname  = PyString_FromString("matplotlib.cm");
-        PyObject* pylabname  = PyString_FromString("pylab");
-        if (!pyplotname || !pylabname || !matplotlibname || !cmname) {
-            throw std::runtime_error("couldnt create string");
-        }
-
-        PyObject* matplotlib = PyImport_Import(matplotlibname);
-
-        Py_DECREF(matplotlibname);
-        if (!matplotlib) {
-            PyErr_Print();
-            throw std::runtime_error("Error loading module matplotlib!");
-        }
-
-        // matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
-        // or matplotlib.backends is imported for the first time
-        if (!s_backend.empty()) {
-            PyObject_CallMethod(matplotlib, const_cast<char*>("use"), const_cast<char*>("s"), s_backend.c_str());
-        }
-
-
-
-        PyObject* pymod = PyImport_Import(pyplotname);
-        Py_DECREF(pyplotname);
-        if (!pymod) { throw std::runtime_error("Error loading module matplotlib.pyplot!"); }
-
-        s_python_colormap = PyImport_Import(cmname);
-        Py_DECREF(cmname);
-        if (!s_python_colormap) { throw std::runtime_error("Error loading module matplotlib.cm!"); }
-
-        PyObject* pylabmod = PyImport_Import(pylabname);
-        Py_DECREF(pylabname);
-        if (!pylabmod) { throw std::runtime_error("Error loading module pylab!"); }
-
-        s_python_function_arrow = safe_import(pymod, "arrow");
-        s_python_function_show = safe_import(pymod, "show");
-        s_python_function_close = safe_import(pymod, "close");
-        s_python_function_draw = safe_import(pymod, "draw");
-        s_python_function_pause = safe_import(pymod, "pause");
-        s_python_function_figure = safe_import(pymod, "figure");
-        s_python_function_fignum_exists = safe_import(pymod, "fignum_exists");
-        s_python_function_plot = safe_import(pymod, "plot");
-        s_python_function_quiver = safe_import(pymod, "quiver");
-        s_python_function_contour = safe_import(pymod, "contour");
-        s_python_function_semilogx = safe_import(pymod, "semilogx");
-        s_python_function_semilogy = safe_import(pymod, "semilogy");
-        s_python_function_loglog = safe_import(pymod, "loglog");
-        s_python_function_fill = safe_import(pymod, "fill");
-        s_python_function_fill_between = safe_import(pymod, "fill_between");
-        s_python_function_hist = safe_import(pymod,"hist");
-        s_python_function_scatter = safe_import(pymod,"scatter");
-        s_python_function_boxplot = safe_import(pymod,"boxplot");
-        s_python_function_subplot = safe_import(pymod, "subplot");
-        s_python_function_subplot2grid = safe_import(pymod, "subplot2grid");
-        s_python_function_legend = safe_import(pymod, "legend");
-        s_python_function_xlim = safe_import(pymod, "xlim");
-        s_python_function_ylim = safe_import(pymod, "ylim");
-        s_python_function_title = safe_import(pymod, "title");
-        s_python_function_axis = safe_import(pymod, "axis");
-        s_python_function_axhline = safe_import(pymod, "axhline");
-        s_python_function_axvline = safe_import(pymod, "axvline");
-        s_python_function_axvspan = safe_import(pymod, "axvspan");
-        s_python_function_xlabel = safe_import(pymod, "xlabel");
-        s_python_function_ylabel = safe_import(pymod, "ylabel");
-        s_python_function_gca = safe_import(pymod, "gca");
-        s_python_function_xticks = safe_import(pymod, "xticks");
-        s_python_function_yticks = safe_import(pymod, "yticks");
-        s_python_function_margins = safe_import(pymod, "margins");
-        s_python_function_tick_params = safe_import(pymod, "tick_params");
-        s_python_function_grid = safe_import(pymod, "grid");
-        s_python_function_ion = safe_import(pymod, "ion");
-        s_python_function_ginput = safe_import(pymod, "ginput");
-        s_python_function_save = safe_import(pylabmod, "savefig");
-        s_python_function_annotate = safe_import(pymod,"annotate");
-        s_python_function_cla = safe_import(pymod, "cla");
-        s_python_function_clf = safe_import(pymod, "clf");
-        s_python_function_errorbar = safe_import(pymod, "errorbar");
-        s_python_function_tight_layout = safe_import(pymod, "tight_layout");
-        s_python_function_stem = safe_import(pymod, "stem");
-        s_python_function_xkcd = safe_import(pymod, "xkcd");
-        s_python_function_text = safe_import(pymod, "text");
-        s_python_function_suptitle = safe_import(pymod, "suptitle");
-        s_python_function_bar = safe_import(pymod,"bar");
-        s_python_function_barh = safe_import(pymod, "barh");
-        s_python_function_colorbar = PyObject_GetAttrString(pymod, "colorbar");
-        s_python_function_subplots_adjust = safe_import(pymod,"subplots_adjust");
-        s_python_function_rcparams = PyObject_GetAttrString(pymod, "rcParams");
-	s_python_function_spy = PyObject_GetAttrString(pymod, "spy");
-#ifndef WITHOUT_NUMPY
-        s_python_function_imshow = safe_import(pymod, "imshow");
-#endif
-        s_python_empty_tuple = PyTuple_New(0);
-    }
-
-    ~_interpreter() {
-        Py_Finalize();
-    }
-};
-
-} // end namespace detail
-
-/// Select the backend
-///
-/// **NOTE:** This must be called before the first plot command to have
-/// any effect.
-///
-/// Mainly useful to select the non-interactive 'Agg' backend when running
-/// matplotlibcpp in headless mode, for example on a machine with no display.
-///
-/// See also: https://matplotlib.org/2.0.2/api/matplotlib_configuration_api.html#matplotlib.use
-inline void backend(const std::string& name)
-{
-    detail::s_backend = name;
-}
-
-inline bool annotate(std::string annotation, double x, double y)
-{
-    detail::_interpreter::get();
-
-    PyObject * xy = PyTuple_New(2);
-    PyObject * str = PyString_FromString(annotation.c_str());
-
-    PyTuple_SetItem(xy,0,PyFloat_FromDouble(x));
-    PyTuple_SetItem(xy,1,PyFloat_FromDouble(y));
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "xy", xy);
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, str);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_annotate, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-namespace detail {
-
-#ifndef WITHOUT_NUMPY
-// Type selector for numpy array conversion
-template <typename T> struct select_npy_type { const static NPY_TYPES type = NPY_NOTYPE; }; //Default
-template <> struct select_npy_type<double> { const static NPY_TYPES type = NPY_DOUBLE; };
-template <> struct select_npy_type<float> { const static NPY_TYPES type = NPY_FLOAT; };
-template <> struct select_npy_type<bool> { const static NPY_TYPES type = NPY_BOOL; };
-template <> struct select_npy_type<int8_t> { const static NPY_TYPES type = NPY_INT8; };
-template <> struct select_npy_type<int16_t> { const static NPY_TYPES type = NPY_SHORT; };
-template <> struct select_npy_type<int32_t> { const static NPY_TYPES type = NPY_INT; };
-template <> struct select_npy_type<int64_t> { const static NPY_TYPES type = NPY_INT64; };
-template <> struct select_npy_type<uint8_t> { const static NPY_TYPES type = NPY_UINT8; };
-template <> struct select_npy_type<uint16_t> { const static NPY_TYPES type = NPY_USHORT; };
-template <> struct select_npy_type<uint32_t> { const static NPY_TYPES type = NPY_ULONG; };
-template <> struct select_npy_type<uint64_t> { const static NPY_TYPES type = NPY_UINT64; };
-
-// Sanity checks; comment them out or change the numpy type below if you're compiling on
-// a platform where they don't apply
-static_assert(sizeof(long long) == 8);
-template <> struct select_npy_type<long long> { const static NPY_TYPES type = NPY_INT64; };
-static_assert(sizeof(unsigned long long) == 8);
-template <> struct select_npy_type<unsigned long long> { const static NPY_TYPES type = NPY_UINT64; };
-
-template<typename Numeric>
-PyObject* get_array(const std::vector<Numeric>& v)
-{
-    npy_intp vsize = v.size();
-    NPY_TYPES type = select_npy_type<Numeric>::type;
-    if (type == NPY_NOTYPE) {
-        size_t memsize = v.size()*sizeof(double);
-        double* dp = static_cast<double*>(::malloc(memsize));
-        for (size_t i=0; i<v.size(); ++i)
-            dp[i] = v[i];
-        PyObject* varray = PyArray_SimpleNewFromData(1, &vsize, NPY_DOUBLE, dp);
-        PyArray_UpdateFlags(reinterpret_cast<PyArrayObject*>(varray), NPY_ARRAY_OWNDATA);
-        return varray;
-    }
-
-    PyObject* varray = PyArray_SimpleNewFromData(1, &vsize, type, (void*)(v.data()));
-    return varray;
-}
-
-
-template<typename Numeric>
-PyObject* get_2darray(const std::vector<::std::vector<Numeric>>& v)
-{
-    if (v.size() < 1) throw std::runtime_error("get_2d_array v too small");
-
-    npy_intp vsize[2] = {static_cast<npy_intp>(v.size()),
-                         static_cast<npy_intp>(v[0].size())};
-
-    PyArrayObject *varray =
-        (PyArrayObject *)PyArray_SimpleNew(2, vsize, NPY_DOUBLE);
-
-    double *vd_begin = static_cast<double *>(PyArray_DATA(varray));
-
-    for (const ::std::vector<Numeric> &v_row : v) {
-      if (v_row.size() != static_cast<size_t>(vsize[1]))
-        throw std::runtime_error("Missmatched array size");
-      std::copy(v_row.begin(), v_row.end(), vd_begin);
-      vd_begin += vsize[1];
-    }
-
-    return reinterpret_cast<PyObject *>(varray);
-}
-
-#else // fallback if we don't have numpy: copy every element of the given vector
-
-template<typename Numeric>
-PyObject* get_array(const std::vector<Numeric>& v)
-{
-    PyObject* list = PyList_New(v.size());
-    for(size_t i = 0; i < v.size(); ++i) {
-        PyList_SetItem(list, i, PyFloat_FromDouble(v.at(i)));
-    }
-    return list;
-}
-
-#endif // WITHOUT_NUMPY
-
-// sometimes, for labels and such, we need string arrays
-inline PyObject * get_array(const std::vector<std::string>& strings)
-{
-  PyObject* list = PyList_New(strings.size());
-  for (std::size_t i = 0; i < strings.size(); ++i) {
-    PyList_SetItem(list, i, PyString_FromString(strings[i].c_str()));
-  }
-  return list;
-}
-
-// not all matplotlib need 2d arrays, some prefer lists of lists
-template<typename Numeric>
-PyObject* get_listlist(const std::vector<std::vector<Numeric>>& ll)
-{
-  PyObject* listlist = PyList_New(ll.size());
-  for (std::size_t i = 0; i < ll.size(); ++i) {
-    PyList_SetItem(listlist, i, get_array(ll[i]));
-  }
-  return listlist;
-}
-
-} // namespace detail
-
-/// Plot a line through the given x and y data points..
-///
-/// See: https://matplotlib.org/3.2.1/api/_as_gen/matplotlib.pyplot.plot.html
-template<typename Numeric>
-bool plot(const std::vector<Numeric> &x, const std::vector<Numeric> &y, const std::map<std::string, std::string>& keywords)
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    // using numpy arrays
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    // construct positional args
-    PyObject* args = PyTuple_New(2);
-    PyTuple_SetItem(args, 0, xarray);
-    PyTuple_SetItem(args, 1, yarray);
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-// TODO - it should be possible to make this work by implementing
-// a non-numpy alternative for `detail::get_2darray()`.
-#ifndef WITHOUT_NUMPY
-template <typename Numeric>
-void plot_surface(const std::vector<::std::vector<Numeric>> &x,
-                  const std::vector<::std::vector<Numeric>> &y,
-                  const std::vector<::std::vector<Numeric>> &z,
-                  const std::map<std::string, std::string> &keywords =
-                      std::map<std::string, std::string>(),
-                  const long fig_number=0)
-{
-  detail::_interpreter::get();
-
-  // We lazily load the modules here the first time this function is called
-  // because I'm not sure that we can assume "matplotlib installed" implies
-  // "mpl_toolkits installed" on all platforms, and we don't want to require
-  // it for people who don't need 3d plots.
-  static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr;
-  if (!mpl_toolkitsmod) {
-    detail::_interpreter::get();
-
-    PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits");
-    PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d");
-    if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); }
-
-    mpl_toolkitsmod = PyImport_Import(mpl_toolkits);
-    Py_DECREF(mpl_toolkits);
-    if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); }
-
-    axis3dmod = PyImport_Import(axis3d);
-    Py_DECREF(axis3d);
-    if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); }
-  }
-
-  assert(x.size() == y.size());
-  assert(y.size() == z.size());
-
-  // using numpy arrays
-  PyObject *xarray = detail::get_2darray(x);
-  PyObject *yarray = detail::get_2darray(y);
-  PyObject *zarray = detail::get_2darray(z);
-
-  // construct positional args
-  PyObject *args = PyTuple_New(3);
-  PyTuple_SetItem(args, 0, xarray);
-  PyTuple_SetItem(args, 1, yarray);
-  PyTuple_SetItem(args, 2, zarray);
-
-  // Build up the kw args.
-  PyObject *kwargs = PyDict_New();
-  PyDict_SetItemString(kwargs, "rstride", PyInt_FromLong(1));
-  PyDict_SetItemString(kwargs, "cstride", PyInt_FromLong(1));
-
-  PyObject *python_colormap_coolwarm = PyObject_GetAttrString(
-      detail::_interpreter::get().s_python_colormap, "coolwarm");
-
-  PyDict_SetItemString(kwargs, "cmap", python_colormap_coolwarm);
-
-  for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
-       it != keywords.end(); ++it) {
-    if (it->first == "linewidth" || it->first == "alpha") {
-      PyDict_SetItemString(kwargs, it->first.c_str(),
-        PyFloat_FromDouble(std::stod(it->second)));
-    } else {
-      PyDict_SetItemString(kwargs, it->first.c_str(),
-        PyString_FromString(it->second.c_str()));
-    }
-  }
-
-  PyObject *fig_args = PyTuple_New(1);
-  PyObject* fig = nullptr;
-  PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number));
-  PyObject *fig_exists =
-    PyObject_CallObject(
-    detail::_interpreter::get().s_python_function_fignum_exists, fig_args);
-  if (!PyObject_IsTrue(fig_exists)) {
-    fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
-      detail::_interpreter::get().s_python_empty_tuple);
-  } else {
-    fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
-      fig_args);
-  }
-  Py_DECREF(fig_exists);
-  if (!fig) throw std::runtime_error("Call to figure() failed.");
-
-  PyObject *gca_kwargs = PyDict_New();
-  PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d"));
-
-  PyObject *gca = PyObject_GetAttrString(fig, "gca");
-  if (!gca) throw std::runtime_error("No gca");
-  Py_INCREF(gca);
-  PyObject *axis = PyObject_Call(
-      gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs);
-
-  if (!axis) throw std::runtime_error("No axis");
-  Py_INCREF(axis);
-
-  Py_DECREF(gca);
-  Py_DECREF(gca_kwargs);
-
-  PyObject *plot_surface = PyObject_GetAttrString(axis, "plot_surface");
-  if (!plot_surface) throw std::runtime_error("No surface");
-  Py_INCREF(plot_surface);
-  PyObject *res = PyObject_Call(plot_surface, args, kwargs);
-  if (!res) throw std::runtime_error("failed surface");
-  Py_DECREF(plot_surface);
-
-  Py_DECREF(axis);
-  Py_DECREF(args);
-  Py_DECREF(kwargs);
-  if (res) Py_DECREF(res);
-}
-
-template <typename Numeric>
-void contour(const std::vector<::std::vector<Numeric>> &x,
-             const std::vector<::std::vector<Numeric>> &y,
-             const std::vector<::std::vector<Numeric>> &z,
-             const std::map<std::string, std::string> &keywords = {})
-{
-  detail::_interpreter::get();
-
-  // using numpy arrays
-  PyObject *xarray = detail::get_2darray(x);
-  PyObject *yarray = detail::get_2darray(y);
-  PyObject *zarray = detail::get_2darray(z);
-
-  // construct positional args
-  PyObject *args = PyTuple_New(3);
-  PyTuple_SetItem(args, 0, xarray);
-  PyTuple_SetItem(args, 1, yarray);
-  PyTuple_SetItem(args, 2, zarray);
-
-  // Build up the kw args.
-  PyObject *kwargs = PyDict_New();
-
-  PyObject *python_colormap_coolwarm = PyObject_GetAttrString(
-      detail::_interpreter::get().s_python_colormap, "coolwarm");
-
-  PyDict_SetItemString(kwargs, "cmap", python_colormap_coolwarm);
-
-  for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
-       it != keywords.end(); ++it) {
-    PyDict_SetItemString(kwargs, it->first.c_str(),
-                         PyString_FromString(it->second.c_str()));
-  }
-
-  PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_contour, args, kwargs);
-  if (!res)
-    throw std::runtime_error("failed contour");
-
-  Py_DECREF(args);
-  Py_DECREF(kwargs);
-  if (res) Py_DECREF(res);
-}
-
-template <typename Numeric>
-void spy(const std::vector<::std::vector<Numeric>> &x,
-         const double markersize = -1,  // -1 for default matplotlib size
-         const std::map<std::string, std::string> &keywords = {})
-{
-  detail::_interpreter::get();
-
-  PyObject *xarray = detail::get_2darray(x);
-
-  PyObject *kwargs = PyDict_New();
-  if (markersize != -1) {
-    PyDict_SetItemString(kwargs, "markersize", PyFloat_FromDouble(markersize));
-  }
-  for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
-       it != keywords.end(); ++it) {
-    PyDict_SetItemString(kwargs, it->first.c_str(),
-                         PyString_FromString(it->second.c_str()));
-  }
-
-  PyObject *plot_args = PyTuple_New(1);
-  PyTuple_SetItem(plot_args, 0, xarray);
-
-  PyObject *res = PyObject_Call(
-      detail::_interpreter::get().s_python_function_spy, plot_args, kwargs);
-
-  Py_DECREF(plot_args);
-  Py_DECREF(kwargs);
-  if (res) Py_DECREF(res);
-}
-#endif // WITHOUT_NUMPY
-
-template <typename Numeric>
-void plot3(const std::vector<Numeric> &x,
-                  const std::vector<Numeric> &y,
-                  const std::vector<Numeric> &z,
-                  const std::map<std::string, std::string> &keywords =
-                      std::map<std::string, std::string>(),
-                  const long fig_number=0)
-{
-  detail::_interpreter::get();
-
-  // Same as with plot_surface: We lazily load the modules here the first time
-  // this function is called because I'm not sure that we can assume "matplotlib
-  // installed" implies "mpl_toolkits installed" on all platforms, and we don't
-  // want to require it for people who don't need 3d plots.
-  static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr;
-  if (!mpl_toolkitsmod) {
-    detail::_interpreter::get();
-
-    PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits");
-    PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d");
-    if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); }
-
-    mpl_toolkitsmod = PyImport_Import(mpl_toolkits);
-    Py_DECREF(mpl_toolkits);
-    if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); }
-
-    axis3dmod = PyImport_Import(axis3d);
-    Py_DECREF(axis3d);
-    if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); }
-  }
-
-  assert(x.size() == y.size());
-  assert(y.size() == z.size());
-
-  PyObject *xarray = detail::get_array(x);
-  PyObject *yarray = detail::get_array(y);
-  PyObject *zarray = detail::get_array(z);
-
-  // construct positional args
-  PyObject *args = PyTuple_New(3);
-  PyTuple_SetItem(args, 0, xarray);
-  PyTuple_SetItem(args, 1, yarray);
-  PyTuple_SetItem(args, 2, zarray);
-
-  // Build up the kw args.
-  PyObject *kwargs = PyDict_New();
-
-  for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
-       it != keywords.end(); ++it) {
-    PyDict_SetItemString(kwargs, it->first.c_str(),
-                         PyString_FromString(it->second.c_str()));
-  }
-
-  PyObject *fig_args = PyTuple_New(1);
-  PyObject* fig = nullptr;
-  PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number));
-  PyObject *fig_exists =
-    PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, fig_args);
-  if (!PyObject_IsTrue(fig_exists)) {
-    fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
-      detail::_interpreter::get().s_python_empty_tuple);
-  } else {
-    fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
-      fig_args);
-  }
-  if (!fig) throw std::runtime_error("Call to figure() failed.");
-
-  PyObject *gca_kwargs = PyDict_New();
-  PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d"));
-
-  PyObject *gca = PyObject_GetAttrString(fig, "gca");
-  if (!gca) throw std::runtime_error("No gca");
-  Py_INCREF(gca);
-  PyObject *axis = PyObject_Call(
-      gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs);
-
-  if (!axis) throw std::runtime_error("No axis");
-  Py_INCREF(axis);
-
-  Py_DECREF(gca);
-  Py_DECREF(gca_kwargs);
-
-  PyObject *plot3 = PyObject_GetAttrString(axis, "plot");
-  if (!plot3) throw std::runtime_error("No 3D line plot");
-  Py_INCREF(plot3);
-  PyObject *res = PyObject_Call(plot3, args, kwargs);
-  if (!res) throw std::runtime_error("Failed 3D line plot");
-  Py_DECREF(plot3);
-
-  Py_DECREF(axis);
-  Py_DECREF(args);
-  Py_DECREF(kwargs);
-  if (res) Py_DECREF(res);
-}
-
-template<typename Numeric>
-bool stem(const std::vector<Numeric> &x, const std::vector<Numeric> &y, const std::map<std::string, std::string>& keywords)
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    // using numpy arrays
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    // construct positional args
-    PyObject* args = PyTuple_New(2);
-    PyTuple_SetItem(args, 0, xarray);
-    PyTuple_SetItem(args, 1, yarray);
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for (std::map<std::string, std::string>::const_iterator it =
-            keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(),
-                PyString_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(
-            detail::_interpreter::get().s_python_function_stem, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    if (res)
-        Py_DECREF(res);
-
-    return res;
-}
-
-template< typename Numeric >
-bool fill(const std::vector<Numeric>& x, const std::vector<Numeric>& y, const std::map<std::string, std::string>& keywords)
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    // using numpy arrays
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    // construct positional args
-    PyObject* args = PyTuple_New(2);
-    PyTuple_SetItem(args, 0, xarray);
-    PyTuple_SetItem(args, 1, yarray);
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for (auto it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-
-    if (res) Py_DECREF(res);
-
-    return res;
-}
-
-template< typename Numeric >
-bool fill_between(const std::vector<Numeric>& x, const std::vector<Numeric>& y1, const std::vector<Numeric>& y2, const std::map<std::string, std::string>& keywords)
-{
-    assert(x.size() == y1.size());
-    assert(x.size() == y2.size());
-
-    detail::_interpreter::get();
-
-    // using numpy arrays
-    PyObject* xarray = detail::get_array(x);
-    PyObject* y1array = detail::get_array(y1);
-    PyObject* y2array = detail::get_array(y2);
-
-    // construct positional args
-    PyObject* args = PyTuple_New(3);
-    PyTuple_SetItem(args, 0, xarray);
-    PyTuple_SetItem(args, 1, y1array);
-    PyTuple_SetItem(args, 2, y2array);
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill_between, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template <typename Numeric>
-bool arrow(Numeric x, Numeric y, Numeric end_x, Numeric end_y, const std::string& fc = "r",
-           const std::string ec = "k", Numeric head_length = 0.25, Numeric head_width = 0.1625) {
-    PyObject* obj_x = PyFloat_FromDouble(x);
-    PyObject* obj_y = PyFloat_FromDouble(y);
-    PyObject* obj_end_x = PyFloat_FromDouble(end_x);
-    PyObject* obj_end_y = PyFloat_FromDouble(end_y);
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "fc", PyString_FromString(fc.c_str()));
-    PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str()));
-    PyDict_SetItemString(kwargs, "head_width", PyFloat_FromDouble(head_width));
-    PyDict_SetItemString(kwargs, "head_length", PyFloat_FromDouble(head_length));
-
-    PyObject* plot_args = PyTuple_New(4);
-    PyTuple_SetItem(plot_args, 0, obj_x);
-    PyTuple_SetItem(plot_args, 1, obj_y);
-    PyTuple_SetItem(plot_args, 2, obj_end_x);
-    PyTuple_SetItem(plot_args, 3, obj_end_y);
-
-    PyObject* res =
-            PyObject_Call(detail::_interpreter::get().s_python_function_arrow, plot_args, kwargs);
-
-    Py_DECREF(plot_args);
-    Py_DECREF(kwargs);
-    if (res)
-        Py_DECREF(res);
-
-    return res;
-}
-
-template< typename Numeric>
-bool hist(const std::vector<Numeric>& y, long bins=10,std::string color="b",
-          double alpha=1.0, bool cumulative=false)
-{
-    detail::_interpreter::get();
-
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins));
-    PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str()));
-    PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha));
-    PyDict_SetItemString(kwargs, "cumulative", cumulative ? Py_True : Py_False);
-
-    PyObject* plot_args = PyTuple_New(1);
-
-    PyTuple_SetItem(plot_args, 0, yarray);
-
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs);
-
-
-    Py_DECREF(plot_args);
-    Py_DECREF(kwargs);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-#ifndef WITHOUT_NUMPY
-namespace detail {
-
-inline void imshow(void *ptr, const NPY_TYPES type, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords, PyObject** out)
-{
-    assert(type == NPY_UINT8 || type == NPY_FLOAT);
-    assert(colors == 1 || colors == 3 || colors == 4);
-
-    detail::_interpreter::get();
-
-    // construct args
-    npy_intp dims[3] = { rows, columns, colors };
-    PyObject *args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, PyArray_SimpleNewFromData(colors == 1 ? 2 : 3, dims, type, ptr));
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_imshow, args, kwargs);
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    if (!res)
-        throw std::runtime_error("Call to imshow() failed");
-    if (out)
-        *out = res;
-    else
-        Py_DECREF(res);
-}
-
-} // namespace detail
-
-inline void imshow(const unsigned char *ptr, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords = {}, PyObject** out = nullptr)
-{
-    detail::imshow((void *) ptr, NPY_UINT8, rows, columns, colors, keywords, out);
-}
-
-inline void imshow(const float *ptr, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords = {}, PyObject** out = nullptr)
-{
-    detail::imshow((void *) ptr, NPY_FLOAT, rows, columns, colors, keywords, out);
-}
-
-#ifdef WITH_OPENCV
-void imshow(const cv::Mat &image, const std::map<std::string, std::string> &keywords = {})
-{
-    // Convert underlying type of matrix, if needed
-    cv::Mat image2;
-    NPY_TYPES npy_type = NPY_UINT8;
-    switch (image.type() & CV_MAT_DEPTH_MASK) {
-    case CV_8U:
-        image2 = image;
-        break;
-    case CV_32F:
-        image2 = image;
-        npy_type = NPY_FLOAT;
-        break;
-    default:
-        image.convertTo(image2, CV_MAKETYPE(CV_8U, image.channels()));
-    }
-
-    // If color image, convert from BGR to RGB
-    switch (image2.channels()) {
-    case 3:
-        cv::cvtColor(image2, image2, CV_BGR2RGB);
-        break;
-    case 4:
-        cv::cvtColor(image2, image2, CV_BGRA2RGBA);
-    }
-
-    detail::imshow(image2.data, npy_type, image2.rows, image2.cols, image2.channels(), keywords);
-}
-#endif // WITH_OPENCV
-#endif // WITHOUT_NUMPY
-
-template<typename NumericX, typename NumericY>
-bool scatter(const std::vector<NumericX>& x,
-             const std::vector<NumericY>& y,
-             const double s=1.0, // The marker size in points**2
-             const std::map<std::string, std::string> & keywords = {})
-{
-    detail::_interpreter::get();
-
-    assert(x.size() == y.size());
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "s", PyLong_FromLong(s));
-    for (const auto& it : keywords)
-    {
-        PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str()));
-    }
-
-    PyObject* plot_args = PyTuple_New(2);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_scatter, plot_args, kwargs);
-
-    Py_DECREF(plot_args);
-    Py_DECREF(kwargs);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY, typename NumericColors>
-    bool scatter_colored(const std::vector<NumericX>& x,
-                 const std::vector<NumericY>& y,
-                 const std::vector<NumericColors>& colors,
-                 const double s=1.0, // The marker size in points**2
-                 const std::map<std::string, std::string> & keywords = {})
-    {
-        detail::_interpreter::get();
-
-        assert(x.size() == y.size());
-
-        PyObject* xarray = detail::get_array(x);
-        PyObject* yarray = detail::get_array(y);
-        PyObject* colors_array = detail::get_array(colors);
-
-        PyObject* kwargs = PyDict_New();
-        PyDict_SetItemString(kwargs, "s", PyLong_FromLong(s));
-        PyDict_SetItemString(kwargs, "c", colors_array);
-
-        for (const auto& it : keywords)
-        {
-            PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str()));
-        }
-
-        PyObject* plot_args = PyTuple_New(2);
-        PyTuple_SetItem(plot_args, 0, xarray);
-        PyTuple_SetItem(plot_args, 1, yarray);
-
-        PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_scatter, plot_args, kwargs);
-
-        Py_DECREF(plot_args);
-        Py_DECREF(kwargs);
-        if(res) Py_DECREF(res);
-
-        return res;
-    }
-    
-
-template<typename NumericX, typename NumericY, typename NumericZ>
-bool scatter(const std::vector<NumericX>& x,
-             const std::vector<NumericY>& y,
-             const std::vector<NumericZ>& z,
-             const double s=1.0, // The marker size in points**2
-             const std::map<std::string, std::string> & keywords = {},
-             const long fig_number=0) {
-  detail::_interpreter::get();
-
-  // Same as with plot_surface: We lazily load the modules here the first time 
-  // this function is called because I'm not sure that we can assume "matplotlib 
-  // installed" implies "mpl_toolkits installed" on all platforms, and we don't 
-  // want to require it for people who don't need 3d plots.
-  static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr;
-  if (!mpl_toolkitsmod) {
-    detail::_interpreter::get();
-
-    PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits");
-    PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d");
-    if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); }
-
-    mpl_toolkitsmod = PyImport_Import(mpl_toolkits);
-    Py_DECREF(mpl_toolkits);
-    if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); }
-
-    axis3dmod = PyImport_Import(axis3d);
-    Py_DECREF(axis3d);
-    if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); }
-  }
-
-  assert(x.size() == y.size());
-  assert(y.size() == z.size());
-
-  PyObject *xarray = detail::get_array(x);
-  PyObject *yarray = detail::get_array(y);
-  PyObject *zarray = detail::get_array(z);
-
-  // construct positional args
-  PyObject *args = PyTuple_New(3);
-  PyTuple_SetItem(args, 0, xarray);
-  PyTuple_SetItem(args, 1, yarray);
-  PyTuple_SetItem(args, 2, zarray);
-
-  // Build up the kw args.
-  PyObject *kwargs = PyDict_New();
-
-  for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
-       it != keywords.end(); ++it) {
-    PyDict_SetItemString(kwargs, it->first.c_str(),
-                         PyString_FromString(it->second.c_str()));
-  }
-  PyObject *fig_args = PyTuple_New(1);
-  PyObject* fig = nullptr;
-  PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number));
-  PyObject *fig_exists =
-    PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, fig_args);
-  if (!PyObject_IsTrue(fig_exists)) {
-    fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
-      detail::_interpreter::get().s_python_empty_tuple);
-  } else {
-    fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
-      fig_args);
-  }
-  Py_DECREF(fig_exists);
-  if (!fig) throw std::runtime_error("Call to figure() failed.");
-
-  PyObject *gca_kwargs = PyDict_New();
-  PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d"));
-
-  PyObject *gca = PyObject_GetAttrString(fig, "gca");
-  if (!gca) throw std::runtime_error("No gca");
-  Py_INCREF(gca);
-  PyObject *axis = PyObject_Call(
-      gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs);
-
-  if (!axis) throw std::runtime_error("No axis");
-  Py_INCREF(axis);
-
-  Py_DECREF(gca);
-  Py_DECREF(gca_kwargs);
-
-  PyObject *plot3 = PyObject_GetAttrString(axis, "scatter");
-  if (!plot3) throw std::runtime_error("No 3D line plot");
-  Py_INCREF(plot3);
-  PyObject *res = PyObject_Call(plot3, args, kwargs);
-  if (!res) throw std::runtime_error("Failed 3D line plot");
-  Py_DECREF(plot3);
-
-  Py_DECREF(axis);
-  Py_DECREF(args);
-  Py_DECREF(kwargs);
-  Py_DECREF(fig);
-  if (res) Py_DECREF(res);
-  return res;
-
-}
-
-template<typename Numeric>
-bool boxplot(const std::vector<std::vector<Numeric>>& data,
-             const std::vector<std::string>& labels = {},
-             const std::map<std::string, std::string> & keywords = {})
-{
-    detail::_interpreter::get();
-
-    PyObject* listlist = detail::get_listlist(data);
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, listlist);
-
-    PyObject* kwargs = PyDict_New();
-
-    // kwargs needs the labels, if there are (the correct number of) labels
-    if (!labels.empty() && labels.size() == data.size()) {
-        PyDict_SetItemString(kwargs, "labels", detail::get_array(labels));
-    }
-
-    // take care of the remaining keywords
-    for (const auto& it : keywords)
-    {
-        PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_boxplot, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename Numeric>
-bool boxplot(const std::vector<Numeric>& data,
-             const std::map<std::string, std::string> & keywords = {})
-{
-    detail::_interpreter::get();
-
-    PyObject* vector = detail::get_array(data);
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, vector);
-
-    PyObject* kwargs = PyDict_New();
-    for (const auto& it : keywords)
-    {
-        PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_boxplot, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template <typename Numeric>
-bool bar(const std::vector<Numeric> &               x,
-         const std::vector<Numeric> &               y,
-         std::string                                ec       = "black",
-         std::string                                ls       = "-",
-         double                                     lw       = 1.0,
-         const std::map<std::string, std::string> & keywords = {})
-{
-  detail::_interpreter::get();
-
-  PyObject * xarray = detail::get_array(x);
-  PyObject * yarray = detail::get_array(y);
-
-  PyObject * kwargs = PyDict_New();
-
-  PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str()));
-  PyDict_SetItemString(kwargs, "ls", PyString_FromString(ls.c_str()));
-  PyDict_SetItemString(kwargs, "lw", PyFloat_FromDouble(lw));
-
-  for (std::map<std::string, std::string>::const_iterator it =
-         keywords.begin();
-       it != keywords.end();
-       ++it) {
-    PyDict_SetItemString(
-      kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-  }
-
-  PyObject * plot_args = PyTuple_New(2);
-  PyTuple_SetItem(plot_args, 0, xarray);
-  PyTuple_SetItem(plot_args, 1, yarray);
-
-  PyObject * res = PyObject_Call(
-    detail::_interpreter::get().s_python_function_bar, plot_args, kwargs);
-
-  Py_DECREF(plot_args);
-  Py_DECREF(kwargs);
-  if (res) Py_DECREF(res);
-
-  return res;
-}
-
-template <typename Numeric>
-bool bar(const std::vector<Numeric> &               y,
-         std::string                                ec       = "black",
-         std::string                                ls       = "-",
-         double                                     lw       = 1.0,
-         const std::map<std::string, std::string> & keywords = {})
-{
-  using T = typename std::remove_reference<decltype(y)>::type::value_type;
-
-  detail::_interpreter::get();
-
-  std::vector<T> x;
-  for (std::size_t i = 0; i < y.size(); i++) { x.push_back(i); }
-
-  return bar(x, y, ec, ls, lw, keywords);
-}
-
-
-template<typename Numeric>
-bool barh(const std::vector<Numeric> &x, const std::vector<Numeric> &y, std::string ec = "black", std::string ls = "-", double lw = 1.0, const std::map<std::string, std::string> &keywords = { }) {
-    PyObject *xarray = detail::get_array(x);
-    PyObject *yarray = detail::get_array(y);
-
-    PyObject *kwargs = PyDict_New();
-
-    PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str()));
-    PyDict_SetItemString(kwargs, "ls", PyString_FromString(ls.c_str()));
-    PyDict_SetItemString(kwargs, "lw", PyFloat_FromDouble(lw));
-
-    for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject *plot_args = PyTuple_New(2);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-
-    PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_barh, plot_args, kwargs);
-
-    Py_DECREF(plot_args);
-    Py_DECREF(kwargs);
-    if (res) Py_DECREF(res);
-
-    return res;
-}
-
-
-inline bool subplots_adjust(const std::map<std::string, double>& keywords = {})
-{
-    detail::_interpreter::get();
-
-    PyObject* kwargs = PyDict_New();
-    for (std::map<std::string, double>::const_iterator it =
-            keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(),
-                             PyFloat_FromDouble(it->second));
-    }
-
-
-    PyObject* plot_args = PyTuple_New(0);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_subplots_adjust, plot_args, kwargs);
-
-    Py_DECREF(plot_args);
-    Py_DECREF(kwargs);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template< typename Numeric>
-bool named_hist(std::string label,const std::vector<Numeric>& y, long bins=10, std::string color="b", double alpha=1.0)
-{
-    detail::_interpreter::get();
-
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "label", PyString_FromString(label.c_str()));
-    PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins));
-    PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str()));
-    PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha));
-
-
-    PyObject* plot_args = PyTuple_New(1);
-    PyTuple_SetItem(plot_args, 0, yarray);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs);
-
-    Py_DECREF(plot_args);
-    Py_DECREF(kwargs);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool plot(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "")
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(s.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args);
-
-    Py_DECREF(plot_args);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template <typename NumericX, typename NumericY, typename NumericZ>
-bool contour(const std::vector<NumericX>& x, const std::vector<NumericY>& y,
-             const std::vector<NumericZ>& z,
-             const std::map<std::string, std::string>& keywords = {}) {
-    assert(x.size() == y.size() && x.size() == z.size());
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-    PyObject* zarray = detail::get_array(z);
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, zarray);
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
-         it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res =
-            PyObject_Call(detail::_interpreter::get().s_python_function_contour, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-    if (res)
-        Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY, typename NumericU, typename NumericW>
-bool quiver(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::vector<NumericU>& u, const std::vector<NumericW>& w, const std::map<std::string, std::string>& keywords = {})
-{
-    assert(x.size() == y.size() && x.size() == u.size() && u.size() == w.size());
-
-    detail::_interpreter::get();
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-    PyObject* uarray = detail::get_array(u);
-    PyObject* warray = detail::get_array(w);
-
-    PyObject* plot_args = PyTuple_New(4);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, uarray);
-    PyTuple_SetItem(plot_args, 3, warray);
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(
-            detail::_interpreter::get().s_python_function_quiver, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-    if (res)
-        Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY, typename NumericZ, typename NumericU, typename NumericW, typename NumericV>
-bool quiver(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::vector<NumericZ>& z, const std::vector<NumericU>& u, const std::vector<NumericW>& w, const std::vector<NumericV>& v, const std::map<std::string, std::string>& keywords = {})
-{
-  //set up 3d axes stuff
-  static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr;
-  if (!mpl_toolkitsmod) {
-    detail::_interpreter::get();
-
-    PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits");
-    PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d");
-    if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); }
-
-    mpl_toolkitsmod = PyImport_Import(mpl_toolkits);
-    Py_DECREF(mpl_toolkits);
-    if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); }
-
-    axis3dmod = PyImport_Import(axis3d);
-    Py_DECREF(axis3d);
-    if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); }
-  }
-  
-  //assert sizes match up
-  assert(x.size() == y.size() && x.size() == u.size() && u.size() == w.size() && x.size() == z.size() && x.size() == v.size() && u.size() == v.size());
-
-  //set up parameters
-  detail::_interpreter::get();
-
-  PyObject* xarray = detail::get_array(x);
-  PyObject* yarray = detail::get_array(y);
-  PyObject* zarray = detail::get_array(z);
-  PyObject* uarray = detail::get_array(u);
-  PyObject* warray = detail::get_array(w);
-  PyObject* varray = detail::get_array(v);
-
-  PyObject* plot_args = PyTuple_New(6);
-  PyTuple_SetItem(plot_args, 0, xarray);
-  PyTuple_SetItem(plot_args, 1, yarray);
-  PyTuple_SetItem(plot_args, 2, zarray);
-  PyTuple_SetItem(plot_args, 3, uarray);
-  PyTuple_SetItem(plot_args, 4, warray);
-  PyTuple_SetItem(plot_args, 5, varray);
-
-  // construct keyword args
-  PyObject* kwargs = PyDict_New();
-  for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-  {
-      PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-  }
-    
-  //get figure gca to enable 3d projection
-  PyObject *fig =
-      PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
-                          detail::_interpreter::get().s_python_empty_tuple);
-  if (!fig) throw std::runtime_error("Call to figure() failed.");
-
-  PyObject *gca_kwargs = PyDict_New();
-  PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d"));
-
-  PyObject *gca = PyObject_GetAttrString(fig, "gca");
-  if (!gca) throw std::runtime_error("No gca");
-  Py_INCREF(gca);
-  PyObject *axis = PyObject_Call(
-      gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs);
-
-  if (!axis) throw std::runtime_error("No axis");
-  Py_INCREF(axis);
-  Py_DECREF(gca);
-  Py_DECREF(gca_kwargs);
-  
-  //plot our boys bravely, plot them strongly, plot them with a wink and clap
-  PyObject *plot3 = PyObject_GetAttrString(axis, "quiver");
-  if (!plot3) throw std::runtime_error("No 3D line plot");
-  Py_INCREF(plot3);
-  PyObject* res = PyObject_Call(
-          plot3, plot_args, kwargs);
-  if (!res) throw std::runtime_error("Failed 3D plot");
-  Py_DECREF(plot3);
-  Py_DECREF(axis);
-  Py_DECREF(kwargs);
-  Py_DECREF(plot_args);
-  if (res)
-      Py_DECREF(res);
-
-  return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool stem(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "")
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(s.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_CallObject(
-            detail::_interpreter::get().s_python_function_stem, plot_args);
-
-    Py_DECREF(plot_args);
-    if (res)
-        Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool semilogx(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "")
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(s.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_semilogx, plot_args);
-
-    Py_DECREF(plot_args);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool semilogy(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "")
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(s.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_semilogy, plot_args);
-
-    Py_DECREF(plot_args);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool loglog(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "")
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(s.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_loglog, plot_args);
-
-    Py_DECREF(plot_args);
-    if(res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool errorbar(const std::vector<NumericX> &x, const std::vector<NumericY> &y, const std::vector<NumericX> &yerr, const std::map<std::string, std::string> &keywords = {})
-{
-    assert(x.size() == y.size());
-
-    detail::_interpreter::get();
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-    PyObject* yerrarray = detail::get_array(yerr);
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-    }
-
-    PyDict_SetItemString(kwargs, "yerr", yerrarray);
-
-    PyObject *plot_args = PyTuple_New(2);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-
-    PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_errorbar, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-
-    if (res)
-        Py_DECREF(res);
-    else
-        throw std::runtime_error("Call to errorbar() failed.");
-
-    return res;
-}
-
-template<typename Numeric>
-bool named_plot(const std::string& name, const std::vector<Numeric>& y, const std::string& format = "")
-{
-    detail::_interpreter::get();
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
-
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(format.c_str());
-
-    PyObject* plot_args = PyTuple_New(2);
-
-    PyTuple_SetItem(plot_args, 0, yarray);
-    PyTuple_SetItem(plot_args, 1, pystring);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-    if (res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool named_plot(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "")
-{
-    detail::_interpreter::get();
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(format.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-    if (res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool named_semilogx(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "")
-{
-    detail::_interpreter::get();
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(format.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_semilogx, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-    if (res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool named_semilogy(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "")
-{
-    detail::_interpreter::get();
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(format.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_semilogy, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-    if (res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename NumericX, typename NumericY>
-bool named_loglog(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "")
-{
-    detail::_interpreter::get();
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
-
-    PyObject* xarray = detail::get_array(x);
-    PyObject* yarray = detail::get_array(y);
-
-    PyObject* pystring = PyString_FromString(format.c_str());
-
-    PyObject* plot_args = PyTuple_New(3);
-    PyTuple_SetItem(plot_args, 0, xarray);
-    PyTuple_SetItem(plot_args, 1, yarray);
-    PyTuple_SetItem(plot_args, 2, pystring);
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_loglog, plot_args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(plot_args);
-    if (res) Py_DECREF(res);
-
-    return res;
-}
-
-template<typename Numeric>
-bool plot(const std::vector<Numeric>& y, const std::string& format = "")
-{
-    std::vector<Numeric> x(y.size());
-    for(size_t i=0; i<x.size(); ++i) x.at(i) = i;
-    return plot(x,y,format);
-}
-
-template<typename Numeric>
-bool plot(const std::vector<Numeric>& y, const std::map<std::string, std::string>& keywords)
-{
-    std::vector<Numeric> x(y.size());
-    for(size_t i=0; i<x.size(); ++i) x.at(i) = i;
-    return plot(x,y,keywords);
-}
-
-template<typename Numeric>
-bool stem(const std::vector<Numeric>& y, const std::string& format = "")
-{
-    std::vector<Numeric> x(y.size());
-    for (size_t i = 0; i < x.size(); ++i) x.at(i) = i;
-    return stem(x, y, format);
-}
-
-template<typename Numeric>
-void text(Numeric x, Numeric y, const std::string& s = "")
-{
-    detail::_interpreter::get();
-
-    PyObject* args = PyTuple_New(3);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(x));
-    PyTuple_SetItem(args, 1, PyFloat_FromDouble(y));
-    PyTuple_SetItem(args, 2, PyString_FromString(s.c_str()));
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_text, args);
-    if(!res) throw std::runtime_error("Call to text() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-inline void colorbar(PyObject* mappable = NULL, const std::map<std::string, float>& keywords = {})
-{
-    if (mappable == NULL)
-        throw std::runtime_error("Must call colorbar with PyObject* returned from an image, contour, surface, etc.");
-
-    detail::_interpreter::get();
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, mappable);
-
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, float>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyFloat_FromDouble(it->second));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_colorbar, args, kwargs);
-    if(!res) throw std::runtime_error("Call to colorbar() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    Py_DECREF(res);
-}
-
-
-inline long figure(long number = -1)
-{
-    detail::_interpreter::get();
-
-    PyObject *res;
-    if (number == -1)
-        res = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, detail::_interpreter::get().s_python_empty_tuple);
-    else {
-        assert(number > 0);
-
-        // Make sure interpreter is initialised
-        detail::_interpreter::get();
-
-        PyObject *args = PyTuple_New(1);
-        PyTuple_SetItem(args, 0, PyLong_FromLong(number));
-        res = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, args);
-        Py_DECREF(args);
-    }
-
-    if(!res) throw std::runtime_error("Call to figure() failed.");
-
-    PyObject* num = PyObject_GetAttrString(res, "number");
-    if (!num) throw std::runtime_error("Could not get number attribute of figure object");
-    const long figureNumber = PyLong_AsLong(num);
-
-    Py_DECREF(num);
-    Py_DECREF(res);
-
-    return figureNumber;
-}
-
-inline bool fignum_exists(long number)
-{
-    detail::_interpreter::get();
-
-    PyObject *args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, PyLong_FromLong(number));
-    PyObject *res = PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, args);
-    if(!res) throw std::runtime_error("Call to fignum_exists() failed.");
-
-    bool ret = PyObject_IsTrue(res);
-    Py_DECREF(res);
-    Py_DECREF(args);
-
-    return ret;
-}
-
-inline void figure_size(size_t w, size_t h)
-{
-    detail::_interpreter::get();
-
-    const size_t dpi = 100;
-    PyObject* size = PyTuple_New(2);
-    PyTuple_SetItem(size, 0, PyFloat_FromDouble((double)w / dpi));
-    PyTuple_SetItem(size, 1, PyFloat_FromDouble((double)h / dpi));
-
-    PyObject* kwargs = PyDict_New();
-    PyDict_SetItemString(kwargs, "figsize", size);
-    PyDict_SetItemString(kwargs, "dpi", PyLong_FromSize_t(dpi));
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_figure,
-            detail::_interpreter::get().s_python_empty_tuple, kwargs);
-
-    Py_DECREF(kwargs);
-
-    if(!res) throw std::runtime_error("Call to figure_size() failed.");
-    Py_DECREF(res);
-}
-
-inline void legend()
-{
-    detail::_interpreter::get();
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_legend, detail::_interpreter::get().s_python_empty_tuple);
-    if(!res) throw std::runtime_error("Call to legend() failed.");
-
-    Py_DECREF(res);
-}
-
-inline void legend(const std::map<std::string, std::string>& keywords)
-{
-  detail::_interpreter::get();
-
-  // construct keyword args
-  PyObject* kwargs = PyDict_New();
-  for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-  {
-    PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-  }
-
-  PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_legend, detail::_interpreter::get().s_python_empty_tuple, kwargs);
-  if(!res) throw std::runtime_error("Call to legend() failed.");
-
-  Py_DECREF(kwargs);
-  Py_DECREF(res);
-}
-
-template<typename Numeric>
-inline void set_aspect(Numeric ratio)
-{
-    detail::_interpreter::get();
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(ratio));
-    PyObject* kwargs = PyDict_New();
-
-    PyObject *ax =
-    PyObject_CallObject(detail::_interpreter::get().s_python_function_gca,
-      detail::_interpreter::get().s_python_empty_tuple);
-    if (!ax) throw std::runtime_error("Call to gca() failed.");
-    Py_INCREF(ax);
-
-    PyObject *set_aspect = PyObject_GetAttrString(ax, "set_aspect");
-    if (!set_aspect) throw std::runtime_error("Attribute set_aspect not found.");
-    Py_INCREF(set_aspect);
-
-    PyObject *res = PyObject_Call(set_aspect, args, kwargs);
-    if (!res) throw std::runtime_error("Call to set_aspect() failed.");
-    Py_DECREF(set_aspect);
-
-    Py_DECREF(ax);
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-}
-
-inline void set_aspect_equal()
-{
-    // expect ratio == "equal". Leaving error handling to matplotlib.
-    detail::_interpreter::get();
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, PyString_FromString("equal"));
-    PyObject* kwargs = PyDict_New();
-
-    PyObject *ax =
-    PyObject_CallObject(detail::_interpreter::get().s_python_function_gca,
-      detail::_interpreter::get().s_python_empty_tuple);
-    if (!ax) throw std::runtime_error("Call to gca() failed.");
-    Py_INCREF(ax);
-
-    PyObject *set_aspect = PyObject_GetAttrString(ax, "set_aspect");
-    if (!set_aspect) throw std::runtime_error("Attribute set_aspect not found.");
-    Py_INCREF(set_aspect);
-
-    PyObject *res = PyObject_Call(set_aspect, args, kwargs);
-    if (!res) throw std::runtime_error("Call to set_aspect() failed.");
-    Py_DECREF(set_aspect);
-
-    Py_DECREF(ax);
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-}
-
-template<typename Numeric>
-void ylim(Numeric left, Numeric right)
-{
-    detail::_interpreter::get();
-
-    PyObject* list = PyList_New(2);
-    PyList_SetItem(list, 0, PyFloat_FromDouble(left));
-    PyList_SetItem(list, 1, PyFloat_FromDouble(right));
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, list);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args);
-    if(!res) throw std::runtime_error("Call to ylim() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-template<typename Numeric>
-void xlim(Numeric left, Numeric right)
-{
-    detail::_interpreter::get();
-
-    PyObject* list = PyList_New(2);
-    PyList_SetItem(list, 0, PyFloat_FromDouble(left));
-    PyList_SetItem(list, 1, PyFloat_FromDouble(right));
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, list);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args);
-    if(!res) throw std::runtime_error("Call to xlim() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-
-inline std::array<double, 2> xlim()
-{
-    PyObject* args = PyTuple_New(0);
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args);
-
-    if(!res) throw std::runtime_error("Call to xlim() failed.");
-
-    Py_DECREF(res);
-
-    PyObject* left = PyTuple_GetItem(res,0);
-    PyObject* right = PyTuple_GetItem(res,1);
-    return { PyFloat_AsDouble(left), PyFloat_AsDouble(right) };
-}
-
-
-inline std::array<double, 2> ylim()
-{
-    PyObject* args = PyTuple_New(0);
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args);
-
-    if(!res) throw std::runtime_error("Call to ylim() failed.");
-
-    Py_DECREF(res);
-
-    PyObject* left = PyTuple_GetItem(res,0);
-    PyObject* right = PyTuple_GetItem(res,1);
-    return { PyFloat_AsDouble(left), PyFloat_AsDouble(right) };
-}
-
-template<typename Numeric>
-inline void xticks(const std::vector<Numeric> &ticks, const std::vector<std::string> &labels = {}, const std::map<std::string, std::string>& keywords = {})
-{
-    assert(labels.size() == 0 || ticks.size() == labels.size());
-
-    detail::_interpreter::get();
-
-    // using numpy array
-    PyObject* ticksarray = detail::get_array(ticks);
-
-    PyObject* args;
-    if(labels.size() == 0) {
-        // construct positional args
-        args = PyTuple_New(1);
-        PyTuple_SetItem(args, 0, ticksarray);
-    } else {
-        // make tuple of tick labels
-        PyObject* labelstuple = PyTuple_New(labels.size());
-        for (size_t i = 0; i < labels.size(); i++)
-            PyTuple_SetItem(labelstuple, i, PyUnicode_FromString(labels[i].c_str()));
-
-        // construct positional args
-        args = PyTuple_New(2);
-        PyTuple_SetItem(args, 0, ticksarray);
-        PyTuple_SetItem(args, 1, labelstuple);
-    }
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_xticks, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    if(!res) throw std::runtime_error("Call to xticks() failed");
-
-    Py_DECREF(res);
-}
-
-template<typename Numeric>
-inline void xticks(const std::vector<Numeric> &ticks, const std::map<std::string, std::string>& keywords)
-{
-    xticks(ticks, {}, keywords);
-}
-
-template<typename Numeric>
-inline void yticks(const std::vector<Numeric> &ticks, const std::vector<std::string> &labels = {}, const std::map<std::string, std::string>& keywords = {})
-{
-    assert(labels.size() == 0 || ticks.size() == labels.size());
-
-    detail::_interpreter::get();
-
-    // using numpy array
-    PyObject* ticksarray = detail::get_array(ticks);
-
-    PyObject* args;
-    if(labels.size() == 0) {
-        // construct positional args
-        args = PyTuple_New(1);
-        PyTuple_SetItem(args, 0, ticksarray);
-    } else {
-        // make tuple of tick labels
-        PyObject* labelstuple = PyTuple_New(labels.size());
-        for (size_t i = 0; i < labels.size(); i++)
-            PyTuple_SetItem(labelstuple, i, PyUnicode_FromString(labels[i].c_str()));
-
-        // construct positional args
-        args = PyTuple_New(2);
-        PyTuple_SetItem(args, 0, ticksarray);
-        PyTuple_SetItem(args, 1, labelstuple);
-    }
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_yticks, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    if(!res) throw std::runtime_error("Call to yticks() failed");
-
-    Py_DECREF(res);
-}
-
-template<typename Numeric>
-inline void yticks(const std::vector<Numeric> &ticks, const std::map<std::string, std::string>& keywords)
-{
-    yticks(ticks, {}, keywords);
-}
-
-template <typename Numeric> inline void margins(Numeric margin)
-{
-    // construct positional args
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(margin));
-
-    PyObject* res =
-            PyObject_CallObject(detail::_interpreter::get().s_python_function_margins, args);
-    if (!res)
-        throw std::runtime_error("Call to margins() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-template <typename Numeric> inline void margins(Numeric margin_x, Numeric margin_y)
-{
-    // construct positional args
-    PyObject* args = PyTuple_New(2);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(margin_x));
-    PyTuple_SetItem(args, 1, PyFloat_FromDouble(margin_y));
-
-    PyObject* res =
-            PyObject_CallObject(detail::_interpreter::get().s_python_function_margins, args);
-    if (!res)
-        throw std::runtime_error("Call to margins() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-
-inline void tick_params(const std::map<std::string, std::string>& keywords, const std::string axis = "both")
-{
-  detail::_interpreter::get();
-
-  // construct positional args
-  PyObject* args;
-  args = PyTuple_New(1);
-  PyTuple_SetItem(args, 0, PyString_FromString(axis.c_str()));
-
-  // construct keyword args
-  PyObject* kwargs = PyDict_New();
-  for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-  {
-    PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-  }
-
-
-  PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_tick_params, args, kwargs);
-
-  Py_DECREF(args);
-  Py_DECREF(kwargs);
-  if (!res) throw std::runtime_error("Call to tick_params() failed");
-
-  Py_DECREF(res);
-}
-
-inline void subplot(long nrows, long ncols, long plot_number)
-{
-    detail::_interpreter::get();
-
-    // construct positional args
-    PyObject* args = PyTuple_New(3);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(nrows));
-    PyTuple_SetItem(args, 1, PyFloat_FromDouble(ncols));
-    PyTuple_SetItem(args, 2, PyFloat_FromDouble(plot_number));
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_subplot, args);
-    if(!res) throw std::runtime_error("Call to subplot() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-inline void subplot2grid(long nrows, long ncols, long rowid=0, long colid=0, long rowspan=1, long colspan=1)
-{
-    detail::_interpreter::get();
-
-    PyObject* shape = PyTuple_New(2);
-    PyTuple_SetItem(shape, 0, PyLong_FromLong(nrows));
-    PyTuple_SetItem(shape, 1, PyLong_FromLong(ncols));
-
-    PyObject* loc = PyTuple_New(2);
-    PyTuple_SetItem(loc, 0, PyLong_FromLong(rowid));
-    PyTuple_SetItem(loc, 1, PyLong_FromLong(colid));
-
-    PyObject* args = PyTuple_New(4);
-    PyTuple_SetItem(args, 0, shape);
-    PyTuple_SetItem(args, 1, loc);
-    PyTuple_SetItem(args, 2, PyLong_FromLong(rowspan));
-    PyTuple_SetItem(args, 3, PyLong_FromLong(colspan));
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_subplot2grid, args);
-    if(!res) throw std::runtime_error("Call to subplot2grid() failed.");
-
-    Py_DECREF(shape);
-    Py_DECREF(loc);
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-inline void title(const std::string &titlestr, const std::map<std::string, std::string> &keywords = {})
-{
-    detail::_interpreter::get();
-
-    PyObject* pytitlestr = PyString_FromString(titlestr.c_str());
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, pytitlestr);
-
-    PyObject* kwargs = PyDict_New();
-    for (auto it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_title, args, kwargs);
-    if(!res) throw std::runtime_error("Call to title() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    Py_DECREF(res);
-}
-
-inline void suptitle(const std::string &suptitlestr, const std::map<std::string, std::string> &keywords = {})
-{
-    detail::_interpreter::get();
-
-    PyObject* pysuptitlestr = PyString_FromString(suptitlestr.c_str());
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, pysuptitlestr);
-
-    PyObject* kwargs = PyDict_New();
-    for (auto it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_suptitle, args, kwargs);
-    if(!res) throw std::runtime_error("Call to suptitle() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    Py_DECREF(res);
-}
-
-inline void axis(const std::string &axisstr)
-{
-    detail::_interpreter::get();
-
-    PyObject* str = PyString_FromString(axisstr.c_str());
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, str);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_axis, args);
-    if(!res) throw std::runtime_error("Call to title() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-inline void axhline(double y, double xmin = 0., double xmax = 1., const std::map<std::string, std::string>& keywords = std::map<std::string, std::string>())
-{
-    detail::_interpreter::get();
-
-    // construct positional args
-    PyObject* args = PyTuple_New(3);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(y));
-    PyTuple_SetItem(args, 1, PyFloat_FromDouble(xmin));
-    PyTuple_SetItem(args, 2, PyFloat_FromDouble(xmax));
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axhline, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-
-    if(res) Py_DECREF(res);
-}
-
-inline void axvline(double x, double ymin = 0., double ymax = 1., const std::map<std::string, std::string>& keywords = std::map<std::string, std::string>())
-{
-    detail::_interpreter::get();
-
-    // construct positional args
-    PyObject* args = PyTuple_New(3);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(x));
-    PyTuple_SetItem(args, 1, PyFloat_FromDouble(ymin));
-    PyTuple_SetItem(args, 2, PyFloat_FromDouble(ymax));
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axvline, args, kwargs);
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-
-    if(res) Py_DECREF(res);
-}
-
-inline void axvspan(double xmin, double xmax, double ymin = 0., double ymax = 1., const std::map<std::string, std::string>& keywords = std::map<std::string, std::string>())
-{
-    // construct positional args
-    PyObject* args = PyTuple_New(4);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(xmin));
-    PyTuple_SetItem(args, 1, PyFloat_FromDouble(xmax));
-    PyTuple_SetItem(args, 2, PyFloat_FromDouble(ymin));
-    PyTuple_SetItem(args, 3, PyFloat_FromDouble(ymax));
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for (auto it = keywords.begin(); it != keywords.end(); ++it) {
-      if (it->first == "linewidth" || it->first == "alpha") {
-        PyDict_SetItemString(kwargs, it->first.c_str(),
-          PyFloat_FromDouble(std::stod(it->second)));
-      } else {
-        PyDict_SetItemString(kwargs, it->first.c_str(),
-          PyString_FromString(it->second.c_str()));
-      }
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axvspan, args, kwargs);
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-
-    if(res) Py_DECREF(res);
-}
-
-inline void xlabel(const std::string &str, const std::map<std::string, std::string> &keywords = {})
-{
-    detail::_interpreter::get();
-
-    PyObject* pystr = PyString_FromString(str.c_str());
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, pystr);
-
-    PyObject* kwargs = PyDict_New();
-    for (auto it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_xlabel, args, kwargs);
-    if(!res) throw std::runtime_error("Call to xlabel() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    Py_DECREF(res);
-}
-
-inline void ylabel(const std::string &str, const std::map<std::string, std::string>& keywords = {})
-{
-    detail::_interpreter::get();
-
-    PyObject* pystr = PyString_FromString(str.c_str());
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, pystr);
-
-    PyObject* kwargs = PyDict_New();
-    for (auto it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_ylabel, args, kwargs);
-    if(!res) throw std::runtime_error("Call to ylabel() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    Py_DECREF(res);
-}
-
-inline void set_zlabel(const std::string &str, const std::map<std::string, std::string>& keywords = {})
-{
-    detail::_interpreter::get();
-
-    // Same as with plot_surface: We lazily load the modules here the first time
-    // this function is called because I'm not sure that we can assume "matplotlib
-    // installed" implies "mpl_toolkits installed" on all platforms, and we don't
-    // want to require it for people who don't need 3d plots.
-    static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr;
-    if (!mpl_toolkitsmod) {
-        PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits");
-        PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d");
-        if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); }
-
-        mpl_toolkitsmod = PyImport_Import(mpl_toolkits);
-        Py_DECREF(mpl_toolkits);
-        if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); }
-
-        axis3dmod = PyImport_Import(axis3d);
-        Py_DECREF(axis3d);
-        if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); }
-    }
-
-    PyObject* pystr = PyString_FromString(str.c_str());
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, pystr);
-
-    PyObject* kwargs = PyDict_New();
-    for (auto it = keywords.begin(); it != keywords.end(); ++it) {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject *ax =
-    PyObject_CallObject(detail::_interpreter::get().s_python_function_gca,
-      detail::_interpreter::get().s_python_empty_tuple);
-    if (!ax) throw std::runtime_error("Call to gca() failed.");
-    Py_INCREF(ax);
-
-    PyObject *zlabel = PyObject_GetAttrString(ax, "set_zlabel");
-    if (!zlabel) throw std::runtime_error("Attribute set_zlabel not found.");
-    Py_INCREF(zlabel);
-
-    PyObject *res = PyObject_Call(zlabel, args, kwargs);
-    if (!res) throw std::runtime_error("Call to set_zlabel() failed.");
-    Py_DECREF(zlabel);
-
-    Py_DECREF(ax);
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    if (res) Py_DECREF(res);
-}
-
-inline void grid(bool flag)
-{
-    detail::_interpreter::get();
-
-    PyObject* pyflag = flag ? Py_True : Py_False;
-    Py_INCREF(pyflag);
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, pyflag);
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_grid, args);
-    if(!res) throw std::runtime_error("Call to grid() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-inline void show(const bool block = true)
-{
-    detail::_interpreter::get();
-
-    PyObject* res;
-    if(block)
-    {
-        res = PyObject_CallObject(
-                detail::_interpreter::get().s_python_function_show,
-                detail::_interpreter::get().s_python_empty_tuple);
-    }
-    else
-    {
-        PyObject *kwargs = PyDict_New();
-        PyDict_SetItemString(kwargs, "block", Py_False);
-        res = PyObject_Call( detail::_interpreter::get().s_python_function_show, detail::_interpreter::get().s_python_empty_tuple, kwargs);
-       Py_DECREF(kwargs);
-    }
-
-
-    if (!res) throw std::runtime_error("Call to show() failed.");
-
-    Py_DECREF(res);
-}
-
-inline void close()
-{
-    detail::_interpreter::get();
-
-    PyObject* res = PyObject_CallObject(
-            detail::_interpreter::get().s_python_function_close,
-            detail::_interpreter::get().s_python_empty_tuple);
-
-    if (!res) throw std::runtime_error("Call to close() failed.");
-
-    Py_DECREF(res);
-}
-
-inline void xkcd() {
-    detail::_interpreter::get();
-
-    PyObject* res;
-    PyObject *kwargs = PyDict_New();
-
-    res = PyObject_Call(detail::_interpreter::get().s_python_function_xkcd,
-            detail::_interpreter::get().s_python_empty_tuple, kwargs);
-
-    Py_DECREF(kwargs);
-
-    if (!res)
-        throw std::runtime_error("Call to show() failed.");
-
-    Py_DECREF(res);
-}
-
-inline void draw()
-{
-    detail::_interpreter::get();
-
-    PyObject* res = PyObject_CallObject(
-        detail::_interpreter::get().s_python_function_draw,
-        detail::_interpreter::get().s_python_empty_tuple);
-
-    if (!res) throw std::runtime_error("Call to draw() failed.");
-
-    Py_DECREF(res);
-}
-
-template<typename Numeric>
-inline void pause(Numeric interval)
-{
-    detail::_interpreter::get();
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, PyFloat_FromDouble(interval));
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_pause, args);
-    if(!res) throw std::runtime_error("Call to pause() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(res);
-}
-
-inline void save(const std::string& filename, const int dpi=0)
-{
-    detail::_interpreter::get();
-
-    PyObject* pyfilename = PyString_FromString(filename.c_str());
-
-    PyObject* args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, pyfilename);
-
-    PyObject* kwargs = PyDict_New();
-
-    if(dpi > 0)
-    {
-        PyDict_SetItemString(kwargs, "dpi", PyLong_FromLong(dpi));
-    }
-
-    PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_save, args, kwargs);
-    if (!res) throw std::runtime_error("Call to save() failed.");
-
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    Py_DECREF(res);
-}
-
-inline void rcparams(const std::map<std::string, std::string>& keywords = {}) {
-    detail::_interpreter::get();
-    PyObject* args = PyTuple_New(0);
-    PyObject* kwargs = PyDict_New();
-    for (auto it = keywords.begin(); it != keywords.end(); ++it) {
-        if ("text.usetex" == it->first)
-          PyDict_SetItemString(kwargs, it->first.c_str(), PyLong_FromLong(std::stoi(it->second.c_str())));
-        else PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
-    }
-    
-    PyObject * update = PyObject_GetAttrString(detail::_interpreter::get().s_python_function_rcparams, "update");
-    PyObject * res = PyObject_Call(update, args, kwargs);
-    if(!res) throw std::runtime_error("Call to rcParams.update() failed.");
-    Py_DECREF(args);
-    Py_DECREF(kwargs);
-    Py_DECREF(update);
-    Py_DECREF(res);
-}
-
-inline void clf() {
-    detail::_interpreter::get();
-
-    PyObject *res = PyObject_CallObject(
-        detail::_interpreter::get().s_python_function_clf,
-        detail::_interpreter::get().s_python_empty_tuple);
-
-    if (!res) throw std::runtime_error("Call to clf() failed.");
-
-    Py_DECREF(res);
-}
-
-inline void cla() {
-    detail::_interpreter::get();
-
-    PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_cla,
-                                        detail::_interpreter::get().s_python_empty_tuple);
-
-    if (!res)
-        throw std::runtime_error("Call to cla() failed.");
-
-    Py_DECREF(res);
-}
-
-inline void ion() {
-    detail::_interpreter::get();
-
-    PyObject *res = PyObject_CallObject(
-        detail::_interpreter::get().s_python_function_ion,
-        detail::_interpreter::get().s_python_empty_tuple);
-
-    if (!res) throw std::runtime_error("Call to ion() failed.");
-
-    Py_DECREF(res);
-}
-
-inline std::vector<std::array<double, 2>> ginput(const int numClicks = 1, const std::map<std::string, std::string>& keywords = {})
-{
-    detail::_interpreter::get();
-
-    PyObject *args = PyTuple_New(1);
-    PyTuple_SetItem(args, 0, PyLong_FromLong(numClicks));
-
-    // construct keyword args
-    PyObject* kwargs = PyDict_New();
-    for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
-    {
-        PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
-    }
-
-    PyObject* res = PyObject_Call(
-        detail::_interpreter::get().s_python_function_ginput, args, kwargs);
-
-    Py_DECREF(kwargs);
-    Py_DECREF(args);
-    if (!res) throw std::runtime_error("Call to ginput() failed.");
-
-    const size_t len = PyList_Size(res);
-    std::vector<std::array<double, 2>> out;
-    out.reserve(len);
-    for (size_t i = 0; i < len; i++) {
-        PyObject *current = PyList_GetItem(res, i);
-        std::array<double, 2> position;
-        position[0] = PyFloat_AsDouble(PyTuple_GetItem(current, 0));
-        position[1] = PyFloat_AsDouble(PyTuple_GetItem(current, 1));
-        out.push_back(position);
-    }
-    Py_DECREF(res);
-
-    return out;
-}
-
-// Actually, is there any reason not to call this automatically for every plot?
-inline void tight_layout() {
-    detail::_interpreter::get();
-
-    PyObject *res = PyObject_CallObject(
-        detail::_interpreter::get().s_python_function_tight_layout,
-        detail::_interpreter::get().s_python_empty_tuple);
-
-    if (!res) throw std::runtime_error("Call to tight_layout() failed.");
-
-    Py_DECREF(res);
-}
-
-// Support for variadic plot() and initializer lists:
-
-namespace detail {
-
-template<typename T>
-using is_function = typename std::is_function<std::remove_pointer<std::remove_reference<T>>>::type;
-
-template<bool obj, typename T>
-struct is_callable_impl;
-
-template<typename T>
-struct is_callable_impl<false, T>
-{
-    typedef is_function<T> type;
-}; // a non-object is callable iff it is a function
-
-template<typename T>
-struct is_callable_impl<true, T>
-{
-    struct Fallback { void operator()(); };
-    struct Derived : T, Fallback { };
-
-    template<typename U, U> struct Check;
-
-    template<typename U>
-    static std::true_type test( ... ); // use a variadic function to make sure (1) it accepts everything and (2) its always the worst match
-
-    template<typename U>
-    static std::false_type test( Check<void(Fallback::*)(), &U::operator()>* );
-
-public:
-    typedef decltype(test<Derived>(nullptr)) type;
-    typedef decltype(&Fallback::operator()) dtype;
-    static constexpr bool value = type::value;
-}; // an object is callable iff it defines operator()
-
-template<typename T>
-struct is_callable
-{
-    // dispatch to is_callable_impl<true, T> or is_callable_impl<false, T> depending on whether T is of class type or not
-    typedef typename is_callable_impl<std::is_class<T>::value, T>::type type;
-};
-
-template<typename IsYDataCallable>
-struct plot_impl { };
-
-template<>
-struct plot_impl<std::false_type>
-{
-    template<typename IterableX, typename IterableY>
-    bool operator()(const IterableX& x, const IterableY& y, const std::string& format)
-    {
-        detail::_interpreter::get();
-
-        // 2-phase lookup for distance, begin, end
-        using std::distance;
-        using std::begin;
-        using std::end;
-
-        auto xs = distance(begin(x), end(x));
-        auto ys = distance(begin(y), end(y));
-        assert(xs == ys && "x and y data must have the same number of elements!");
-
-        PyObject* xlist = PyList_New(xs);
-        PyObject* ylist = PyList_New(ys);
-        PyObject* pystring = PyString_FromString(format.c_str());
-
-        auto itx = begin(x), ity = begin(y);
-        for(size_t i = 0; i < xs; ++i) {
-            PyList_SetItem(xlist, i, PyFloat_FromDouble(*itx++));
-            PyList_SetItem(ylist, i, PyFloat_FromDouble(*ity++));
-        }
-
-        PyObject* plot_args = PyTuple_New(3);
-        PyTuple_SetItem(plot_args, 0, xlist);
-        PyTuple_SetItem(plot_args, 1, ylist);
-        PyTuple_SetItem(plot_args, 2, pystring);
-
-        PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args);
-
-        Py_DECREF(plot_args);
-        if(res) Py_DECREF(res);
-
-        return res;
-    }
-};
-
-template<>
-struct plot_impl<std::true_type>
-{
-    template<typename Iterable, typename Callable>
-    bool operator()(const Iterable& ticks, const Callable& f, const std::string& format)
-    {
-        if(begin(ticks) == end(ticks)) return true;
-
-        // We could use additional meta-programming to deduce the correct element type of y,
-        // but all values have to be convertible to double anyways
-        std::vector<double> y;
-        for(auto x : ticks) y.push_back(f(x));
-        return plot_impl<std::false_type>()(ticks,y,format);
-    }
-};
-
-} // end namespace detail
-
-// recursion stop for the above
-template<typename... Args>
-bool plot() { return true; }
-
-template<typename A, typename B, typename... Args>
-bool plot(const A& a, const B& b, const std::string& format, Args... args)
-{
-    return detail::plot_impl<typename detail::is_callable<B>::type>()(a,b,format) && plot(args...);
-}
-
-/*
- * This group of plot() functions is needed to support initializer lists, i.e. calling
- *    plot( {1,2,3,4} )
- */
-inline bool plot(const std::vector<double>& x, const std::vector<double>& y, const std::string& format = "") {
-    return plot<double,double>(x,y,format);
-}
-
-inline bool plot(const std::vector<double>& y, const std::string& format = "") {
-    return plot<double>(y,format);
-}
-
-inline bool plot(const std::vector<double>& x, const std::vector<double>& y, const std::map<std::string, std::string>& keywords) {
-    return plot<double>(x,y,keywords);
-}
-
-/*
- * This class allows dynamic plots, ie changing the plotted data without clearing and re-plotting
- */
-class Plot
-{
-public:
-    // default initialization with plot label, some data and format
-    template<typename Numeric>
-    Plot(const std::string& name, const std::vector<Numeric>& x, const std::vector<Numeric>& y, const std::string& format = "") {
-        detail::_interpreter::get();
-
-        assert(x.size() == y.size());
-
-        PyObject* kwargs = PyDict_New();
-        if(name != "")
-            PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
-
-        PyObject* xarray = detail::get_array(x);
-        PyObject* yarray = detail::get_array(y);
-
-        PyObject* pystring = PyString_FromString(format.c_str());
-
-        PyObject* plot_args = PyTuple_New(3);
-        PyTuple_SetItem(plot_args, 0, xarray);
-        PyTuple_SetItem(plot_args, 1, yarray);
-        PyTuple_SetItem(plot_args, 2, pystring);
-
-        PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs);
-
-        Py_DECREF(kwargs);
-        Py_DECREF(plot_args);
-
-        if(res)
-        {
-            line= PyList_GetItem(res, 0);
-
-            if(line)
-                set_data_fct = PyObject_GetAttrString(line,"set_data");
-            else
-                Py_DECREF(line);
-            Py_DECREF(res);
-        }
-    }
-
-    // shorter initialization with name or format only
-    // basically calls line, = plot([], [])
-    Plot(const std::string& name = "", const std::string& format = "")
-        : Plot(name, std::vector<double>(), std::vector<double>(), format) {}
-
-    template<typename Numeric>
-    bool update(const std::vector<Numeric>& x, const std::vector<Numeric>& y) {
-        assert(x.size() == y.size());
-        if(set_data_fct)
-        {
-            PyObject* xarray = detail::get_array(x);
-            PyObject* yarray = detail::get_array(y);
-
-            PyObject* plot_args = PyTuple_New(2);
-            PyTuple_SetItem(plot_args, 0, xarray);
-            PyTuple_SetItem(plot_args, 1, yarray);
-
-            PyObject* res = PyObject_CallObject(set_data_fct, plot_args);
-            if (res) Py_DECREF(res);
-            return res;
-        }
-        return false;
-    }
-
-    // clears the plot but keep it available
-    bool clear() {
-        return update(std::vector<double>(), std::vector<double>());
-    }
-
-    // definitely remove this line
-    void remove() {
-        if(line)
-        {
-            auto remove_fct = PyObject_GetAttrString(line,"remove");
-            PyObject* args = PyTuple_New(0);
-            PyObject* res = PyObject_CallObject(remove_fct, args);
-            if (res) Py_DECREF(res);
-        }
-        decref();
-    }
-
-    ~Plot() {
-        decref();
-    }
-private:
-
-    void decref() {
-        if(line)
-            Py_DECREF(line);
-        if(set_data_fct)
-            Py_DECREF(set_data_fct);
-    }
-
-
-    PyObject* line = nullptr;
-    PyObject* set_data_fct = nullptr;
-};
-
-} // end namespace matplotlibcpp
-- 
GitLab