diff --git a/src/icp.h b/src/icp.h index 8b1a39fd3424ce20b91080f3a99ce6bb1217783b..9a8fb5b539d8114354e370055baf964bbfaad957 100644 --- a/src/icp.h +++ b/src/icp.h @@ -156,13 +156,13 @@ struct icpParams const icpParams icp_params_default = { false, //bool verbose; // prints debug messages - true, 180.0, 10, // bool use_point_to_line_distance; double max_angular_correction_deg; double max_linear_correction; - 0.5, true, false, // double max_correspondence_dist; bool use_corr_tricks; bool debug_verify_tricks; + true, 5.0, 1, // bool use_point_to_line_distance; double max_angular_correction_deg; double max_linear_correction; + 0.5, false, false, // double max_correspondence_dist; bool use_corr_tricks; bool debug_verify_tricks; 50, 1e-4, 1e-3, // int max_iterations; double epsilon_xy; double epsilon_theta; false, 0, 0, 0, // bool restart; double restart_threshold_mean_error; double restart_dt; double restart_dtheta; 0.023, 60, // double min_reading, max_reading; - 0.9, 0.7, 1.5, false, // double outliers_maxPerc; double outliers_adaptive_order; double outliers_adaptive_mult; - false, false, 10, // bool outliers_remove_doubles; bool do_visibility_test; bool do_alpha_test; double do_alpha_test_thresholdDeg; + 1, 0.8, 2, // double outliers_maxPerc; double outliers_adaptive_order; double outliers_adaptive_mult; + false, false, false, 10, // bool outliers_remove_doubles; bool do_visibility_test; bool do_alpha_test; double do_alpha_test_thresholdDeg; 0.5, 4, // double clustering_threshold; int orientation_neighbourhood; false, false, 0.2, // bool use_ml_weights; bool use_sigma_weights; double sigma; true, 5 // bool do_compute_covariance; double cov_factor; diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt index 44067523264e565cd26bae7e3296ddb1e206fa2a..d1684ec756f4ec46b4d5e32cd2345a80b0087b1d 100644 --- a/test/CMakeLists.txt +++ b/test/CMakeLists.txt @@ -8,6 +8,7 @@ include_directories(${GTEST_INCLUDE_DIRS}) INCLUDE_DIRECTORIES(../src) INCLUDE_DIRECTORIES(/data) FIND_PACKAGE(Eigen3 3.3 REQUIRED) +FIND_PACKAGE(PythonLibs 3) INCLUDE_DIRECTORIES(${EIGEN3_INCLUDE_DIRS}) ############# USE THIS TEST AS AN EXAMPLE #################### @@ -24,7 +25,7 @@ laser_scan_utils_add_gtest(gtest_example gtest_example.cpp) # gtest icp IF(csm_FOUND) laser_scan_utils_add_gtest(gtest_icp gtest_icp.cpp) - target_link_libraries(gtest_icp ${PROJECT_NAME}) + target_link_libraries(gtest_icp ${PROJECT_NAME} ${PYTHON_LIBRARIES}) ENDIF(csm_FOUND) IF(falkolib_FOUND) diff --git a/test/gtest_icp.cpp b/test/gtest_icp.cpp index d410c0b9784a2c9c1b4c725fa0c1bce57acaa182..f4a2ad22f1dbdef70761beda8c5ddf899d14f76f 100644 --- a/test/gtest_icp.cpp +++ b/test/gtest_icp.cpp @@ -20,10 +20,15 @@ // //--------LICENSE_END-------- #include "gtest/utils_gtest.h" - #include "laser_scan.h" #include "icp.h" +#define TEST_PLOTS false +#if TEST_PLOTS +#include "matplotlibcpp.h" +namespace plt = matplotlibcpp; +#endif + using namespace laserscanutils; const Eigen::Vector2d A = Eigen::Vector2d::Zero(); @@ -31,6 +36,9 @@ const Eigen::Vector2d B = (Eigen::Vector2d() << 0, 40).finished(); const Eigen::Vector2d C = (Eigen::Vector2d() << 30, 0).finished(); const Eigen::Vector2d CB = B-C; double AB_ang = atan2((A-B).norm(),(A-C).norm()); +double dist_min = 2; +int color_id=0; +const std::vector<std::string> colors({"b","r","g","c","m","y"}); /* Synthetic scans are created from this simple scenario with three orthogonal walls: * @@ -67,7 +75,7 @@ double pi2pi(const double& _angle) bool insideTriangle(const Eigen::Vector3d& laser_pose) { - return laser_pose(0) > 0 and laser_pose(1) > 0 and laser_pose(0) / C(0) + laser_pose(1) / B(1) < 1; + return laser_pose(0) > 0 + dist_min and laser_pose(1) > 0 + dist_min and laser_pose(0) / (C(0)-dist_min/sin(AB_ang)) + laser_pose(1) / (B(1)-dist_min/cos(AB_ang)) < 1; } Eigen::Vector3d generateRandomPoseInsideTriangle() @@ -79,10 +87,7 @@ Eigen::Vector3d generateRandomPoseInsideTriangle() pose(2) *= M_PI; if (not insideTriangle(pose)) - { - pose(0) = C(0) - pose(0); - pose(1) = B(1) - pose(1); - } + pose = generateRandomPoseInsideTriangle(); return pose; } @@ -135,6 +140,9 @@ LaserScan simulateScan(const Eigen::Vector3d& laser_pose, const LaserScanParams& else throw std::runtime_error("bad theta angle..!"); + // assert dist min + assert(scan.ranges_raw_[i] >= dist_min); + // max range if (scan.ranges_raw_[i] > params.range_max_ or scan.ranges_raw_[i] < params.range_min_) { @@ -160,16 +168,21 @@ void generateRandomProblem(Eigen::Vector3d& pose_ref, Eigen::Vector3d& pose_d, const LaserScanParams& scan_params, LaserScan& scan_ref, - LaserScan& scan_tar) + LaserScan& scan_tar, + double perturbation = 1) { pose_ref = generateRandomPoseInsideTriangle(); - pose_d = Eigen::Vector3d::Random() * 0.1; - pose_tar.head<2>() = pose_ref.head<2>() + Eigen::Rotation2Dd(pose_d(2)) * pose_d.head<2>(); + pose_d = Eigen::Vector3d::Random() * perturbation; + while (pose_d(2) > M_PI) + pose_d(2) -= 2*M_PI; + while (pose_d(2) <= -M_PI) + pose_d(2) += 2*M_PI; + pose_tar.head<2>() = pose_ref.head<2>() + Eigen::Rotation2Dd(pose_ref(2)) * pose_d.head<2>(); pose_tar(2) = pose_ref(2) + pose_d(2); while (not insideTriangle(pose_tar)) { - pose_d = Eigen::Vector3d::Random() * 0.1; - pose_tar.head<2>() = pose_ref.head<2>() + Eigen::Rotation2Dd(pose_d(2)) * pose_d.head<2>(); + pose_d = Eigen::Vector3d::Random(); + pose_tar.head<2>() = pose_ref.head<2>() + Eigen::Rotation2Dd(pose_ref(2)) * pose_d.head<2>(); pose_tar(2) = pose_ref(2) + pose_d(2); } @@ -177,19 +190,77 @@ void generateRandomProblem(Eigen::Vector3d& pose_ref, scan_tar = simulateScan(pose_tar, scan_params); } -TEST(TestIcp, TestSimulateScan) +LaserScanParams generateLaserScanParams(double angle_min_deg, double angle_step_deg) { - // 4 beams: 0º, 90º, 180ª, 270ª + // 360º field of view LaserScanParams scan_params; - scan_params.angle_min_ = 0; - scan_params.angle_step_ = M_PI / 2; - scan_params.angle_max_ = 3*M_PI/2; + scan_params.angle_min_ = angle_min_deg * M_PI / 180; + scan_params.angle_step_ = angle_step_deg * M_PI / 180; + auto n_ranges = int (2*M_PI / scan_params.angle_step_); + scan_params.angle_max_ = scan_params.angle_min_ + (n_ranges-1) * scan_params.angle_step_; scan_params.scan_time_ = 0; scan_params.range_min_ = 0; - scan_params.range_max_ = 1e3; + scan_params.range_max_ = 1e2; scan_params.range_std_dev_ = 0; scan_params.angle_std_dev_ = 0; + //scan_params.print(); + return scan_params; +} + +void initPlot() +{ +#if TEST_PLOTS + plt::figure(); +#endif +} + +void showPlot() +{ +#if TEST_PLOTS + plt::show(); +#endif +} + +void plotScan(const LaserScan& scan, const LaserScanParams& scan_params, const Eigen::Vector3d pose, bool fig_created = false) +{ +#if TEST_PLOTS + // Create figure + if (not fig_created) + plt::figure(); + plt::axis("scaled"); + + std::vector<double> x(scan.ranges_raw_.size()); + std::vector<double> y(scan.ranges_raw_.size()); + for (auto i = 0; i < scan.ranges_raw_.size(); i++) + { + x.at(i) = pose(0) + cos(scan_params.angle_min_ + i*scan_params.angle_step_ + pose(2)) * scan.ranges_raw_.at(i); + y.at(i) = pose(1) + sin(scan_params.angle_min_ + i*scan_params.angle_step_ + pose(2)) * scan.ranges_raw_.at(i); + } + plt::plot(x, y,"."+colors.at(color_id)); + + std::vector<double> pose_x{pose(0)-sin(pose(2)), pose(0), pose(0)+cos(pose(2))}; + std::vector<double> pose_y{pose(1)+cos(pose(2)), pose(1), pose(1)+sin(pose(2))}; + plt::plot(pose_x, pose_y,colors.at(color_id)+"-"); + + if (not fig_created) + plt::show(); + + color_id++; + if (color_id >= colors.size()) + color_id = 0; +#endif +} + +/////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////// TESTS //////////////////////////////////////////// +/////////////////////////////////////////////////////////////////////////////////////////////// + +TEST(TestIcp, TestSimulateScan) +{ + // 4 beams: 0º, 90º, 180ª, 270ª + LaserScanParams scan_params = generateLaserScanParams(0,90); + Eigen::Vector3d laser_pose; laser_pose << C(0) / 4, B(1) / 4, 0; @@ -237,38 +308,118 @@ TEST(TestIcp, TestSimulateScan) TEST(TestIcp, TestGenerateRandomPose) { // 0-2M_PI (5 degrees step) - LaserScanParams scan_params; - scan_params.angle_min_ = 0; - scan_params.angle_step_ = 5 * M_PI / 180; - scan_params.angle_max_ = 2*M_PI-scan_params.angle_step_; - scan_params.scan_time_ = 0; - scan_params.range_min_ = 0; - scan_params.range_max_ = 1e3; - scan_params.range_std_dev_ = 0; - scan_params.angle_std_dev_ = 0; + LaserScanParams scan_params = generateLaserScanParams(-180,1); + + initPlot(); + // 100 random poses and scans for (auto i=0; i < 100; i++) { auto laser_pose = generateRandomPoseInsideTriangle(); ASSERT_TRUE(insideTriangle(laser_pose)); auto scan = simulateScan(laser_pose, scan_params); + + plotScan(scan, scan_params, laser_pose, true); + } + + showPlot(); +} + +TEST(TestIcp, TestIcpSame1) +{ + // -180,180 (1 degrees step) + LaserScanParams scan_params = generateLaserScanParams(-180,1); + + for (auto i = 0; i<10; i++) + { + auto pose = generateRandomPoseInsideTriangle(); + auto scan = simulateScan(pose, scan_params); + + // icp + auto icp_params = icp_params_default; + + // no perturbation + std::cout << "//////////// TestIcpSame1: random problem " << i << " pose: " << pose.transpose() << std::endl; + std::cout << "//////////// NO perturbation" << std::endl; + auto icp_output = ICP::align(scan, + scan, + scan_params, + icp_params, + Eigen::Vector3d::Zero()); + + ASSERT_TRUE(icp_output.valid); + EXPECT_MATRIX_APPROX(icp_output.res_transf, Eigen::Vector3d::Zero(), 1e-1); + + // perturbation + std::cout << "//////////// WITH perturbation" << std::endl; + icp_output = ICP::align(scan, + scan, + scan_params, + icp_params, + Eigen::Vector3d::Random()*0.1); + + if (not icp_output.valid) + icp_output = ICP::align(scan, + scan, + scan_params, + icp_params, + Eigen::Vector3d::Random()*0.1); + + ASSERT_TRUE(icp_output.valid); + EXPECT_MATRIX_APPROX(icp_output.res_transf, Eigen::Vector3d::Zero(), 1e-1); + } +} + +TEST(TestIcp, TestIcpSame2) +{ + // 0,360 (1 degrees step) + LaserScanParams scan_params = generateLaserScanParams(0,1); + + for (auto i = 0; i<10; i++) + { + auto pose = generateRandomPoseInsideTriangle(); + auto scan = simulateScan(pose, scan_params); + + // icp + auto icp_params = icp_params_default; + + // no perturbation + std::cout << "//////////// TestIcpSame1: random problem " << i << " pose: " << pose.transpose() << std::endl; + std::cout << "//////////// NO perturbation" << std::endl; + auto icp_output = ICP::align(scan, + scan, + scan_params, + icp_params, + Eigen::Vector3d::Zero()); + + ASSERT_TRUE(icp_output.valid); + EXPECT_MATRIX_APPROX(icp_output.res_transf, Eigen::Vector3d::Zero(), 1e-1); + + // perturbation + std::cout << "//////////// WITH perturbation" << std::endl; + icp_output = ICP::align(scan, + scan, + scan_params, + icp_params, + Eigen::Vector3d::Random()*0.1); + + if (not icp_output.valid) + icp_output = ICP::align(scan, + scan, + scan_params, + icp_params, + Eigen::Vector3d::Random()*0.1); + + ASSERT_TRUE(icp_output.valid); + EXPECT_MATRIX_APPROX(icp_output.res_transf, Eigen::Vector3d::Zero(), 1e-1); } } TEST(TestIcp, TestIcp1) { - // Scan params - // 0-2M_PI (5 degrees step) - LaserScanParams scan_params; - scan_params.angle_min_ = 0; - scan_params.angle_step_ = 5 * M_PI / 180; - scan_params.angle_max_ = 2*M_PI-scan_params.angle_step_; - scan_params.scan_time_ = 0; - scan_params.range_min_ = 0; - scan_params.range_max_ = 1e2; - scan_params.range_std_dev_ = 0; - scan_params.angle_std_dev_ = 0; + // 0,360 (1 degrees step) + LaserScanParams scan_params = generateLaserScanParams(0,1); Eigen::Vector3d pose_ref, pose_tar, pose_d; LaserScan scan_ref, scan_tar; @@ -278,12 +429,13 @@ TEST(TestIcp, TestIcp1) // Random problem generateRandomProblem(pose_ref, pose_tar, pose_d, scan_params, scan_ref, scan_tar); + std::cout << "//////////// TestIcp1: random problem " << i << std::endl; + std::cout << "\tpose_ref: " << pose_ref.transpose() << std::endl; + std::cout << "\tpose_tar: " << pose_tar.transpose() << std::endl; + // icp auto icp_params = icp_params_default; - //icp_params.max_linear_correction = 20; - //icp_params.print(); - icp_params.verbose = true; auto icp_output = ICP::align(scan_tar, scan_ref, scan_params, @@ -293,10 +445,52 @@ TEST(TestIcp, TestIcp1) ASSERT_TRUE(icp_output.valid); EXPECT_MATRIX_APPROX(icp_output.res_transf, pose_d, 1e-1); + + initPlot(); + plotScan(scan_ref,scan_params,pose_ref,true); + plotScan(scan_tar,scan_params,pose_tar,true); + showPlot(); } } +TEST(TestIcp, TestIcp10) +{ + // -180,180 (1 degrees step) + LaserScanParams scan_params = generateLaserScanParams(-180,1); + + Eigen::Vector3d pose_ref, pose_tar, pose_d; + LaserScan scan_ref, scan_tar; + + for (auto i=0; i < 10; i++) + { + // Random problem + generateRandomProblem(pose_ref, pose_tar, pose_d, scan_params, scan_ref, scan_tar, 10); + + std::cout << "//////////// TestIcp1: random problem " << i << std::endl; + std::cout << "\tpose_ref: " << pose_ref.transpose() << std::endl; + std::cout << "\tpose_tar: " << pose_tar.transpose() << std::endl; + + // icp + auto icp_params = icp_params_default; + + auto icp_output = ICP::align(scan_tar, + scan_ref, + scan_params, + icp_params, + pose_d); + + ASSERT_TRUE(icp_output.valid); + EXPECT_MATRIX_APPROX(icp_output.res_transf, pose_d, 1e-1); + + initPlot(); + plotScan(scan_ref,scan_params,pose_ref,true); + plotScan(scan_tar,scan_params,pose_tar,true); + showPlot(); + } +}//*/ + + int main(int argc, char **argv) { testing::InitGoogleTest(&argc, argv); diff --git a/test/matplotlibcpp.h b/test/matplotlibcpp.h new file mode 100644 index 0000000000000000000000000000000000000000..d95d46ad41379be376401b2b761e8a1d47bfee62 --- /dev/null +++ b/test/matplotlibcpp.h @@ -0,0 +1,2986 @@ +#pragma once + +// Python headers must be included before any system headers, since +// they define _POSIX_C_SOURCE +#include <Python.h> + +#include <vector> +#include <map> +#include <array> +#include <numeric> +#include <algorithm> +#include <stdexcept> +#include <iostream> +#include <cstdint> // <cstdint> requires c++11 support +#include <functional> +#include <string> // std::stod + +#ifndef WITHOUT_NUMPY +# define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION +# include <numpy/arrayobject.h> + +# ifdef WITH_OPENCV +# include <opencv2/opencv.hpp> +# endif // WITH_OPENCV + +/* + * A bunch of constants were removed in OpenCV 4 in favour of enum classes, so + * define the ones we need here. + */ +# if CV_MAJOR_VERSION > 3 +# define CV_BGR2RGB cv::COLOR_BGR2RGB +# define CV_BGRA2RGBA cv::COLOR_BGRA2RGBA +# endif +#endif // WITHOUT_NUMPY + +#if PY_MAJOR_VERSION >= 3 +# define PyString_FromString PyUnicode_FromString +# define PyInt_FromLong PyLong_FromLong +# define PyString_FromString PyUnicode_FromString +#endif + + +namespace matplotlibcpp { +namespace detail { + +static std::string s_backend; + +struct _interpreter { + PyObject* s_python_function_arrow; + PyObject *s_python_function_show; + PyObject *s_python_function_close; + PyObject *s_python_function_draw; + PyObject *s_python_function_pause; + PyObject *s_python_function_save; + PyObject *s_python_function_figure; + PyObject *s_python_function_fignum_exists; + PyObject *s_python_function_plot; + PyObject *s_python_function_quiver; + PyObject* s_python_function_contour; + PyObject *s_python_function_semilogx; + PyObject *s_python_function_semilogy; + PyObject *s_python_function_loglog; + PyObject *s_python_function_fill; + PyObject *s_python_function_fill_between; + PyObject *s_python_function_hist; + PyObject *s_python_function_imshow; + PyObject *s_python_function_scatter; + PyObject *s_python_function_boxplot; + PyObject *s_python_function_subplot; + PyObject *s_python_function_subplot2grid; + PyObject *s_python_function_legend; + PyObject *s_python_function_xlim; + PyObject *s_python_function_ion; + PyObject *s_python_function_ginput; + PyObject *s_python_function_ylim; + PyObject *s_python_function_title; + PyObject *s_python_function_axis; + PyObject *s_python_function_axhline; + PyObject *s_python_function_axvline; + PyObject *s_python_function_axvspan; + PyObject *s_python_function_xlabel; + PyObject *s_python_function_ylabel; + PyObject *s_python_function_gca; + PyObject *s_python_function_xticks; + PyObject *s_python_function_yticks; + PyObject* s_python_function_margins; + PyObject *s_python_function_tick_params; + PyObject *s_python_function_grid; + PyObject* s_python_function_cla; + PyObject *s_python_function_clf; + PyObject *s_python_function_errorbar; + PyObject *s_python_function_annotate; + PyObject *s_python_function_tight_layout; + PyObject *s_python_colormap; + PyObject *s_python_empty_tuple; + PyObject *s_python_function_stem; + PyObject *s_python_function_xkcd; + PyObject *s_python_function_text; + PyObject *s_python_function_suptitle; + PyObject *s_python_function_bar; + PyObject *s_python_function_barh; + PyObject *s_python_function_colorbar; + PyObject *s_python_function_subplots_adjust; + PyObject *s_python_function_rcparams; + PyObject *s_python_function_spy; + + /* For now, _interpreter is implemented as a singleton since its currently not possible to have + multiple independent embedded python interpreters without patching the python source code + or starting a separate process for each. [1] + Furthermore, many python objects expect that they are destructed in the same thread as they + were constructed. [2] So for advanced usage, a `kill()` function is provided so that library + users can manually ensure that the interpreter is constructed and destroyed within the + same thread. + + 1: http://bytes.com/topic/python/answers/793370-multiple-independent-python-interpreters-c-c-program + 2: https://github.com/lava/matplotlib-cpp/pull/202#issue-436220256 + */ + + static _interpreter& get() { + return interkeeper(false); + } + + static _interpreter& kill() { + return interkeeper(true); + } + + // Stores the actual singleton object referenced by `get()` and `kill()`. + static _interpreter& interkeeper(bool should_kill) { + static _interpreter ctx; + if (should_kill) + ctx.~_interpreter(); + return ctx; + } + + PyObject* safe_import(PyObject* module, std::string fname) { + PyObject* fn = PyObject_GetAttrString(module, fname.c_str()); + + if (!fn) + throw std::runtime_error(std::string("Couldn't find required function: ") + fname); + + if (!PyFunction_Check(fn)) + throw std::runtime_error(fname + std::string(" is unexpectedly not a PyFunction.")); + + return fn; + } + +private: + +#ifndef WITHOUT_NUMPY +# if PY_MAJOR_VERSION >= 3 + + void *import_numpy() { + import_array(); // initialize C-API + return NULL; + } + +# else + + void import_numpy() { + import_array(); // initialize C-API + } + +# endif +#endif + + _interpreter() { + + // optional but recommended +#if PY_MAJOR_VERSION >= 3 + wchar_t name[] = L"plotting"; +#else + char name[] = "plotting"; +#endif + Py_SetProgramName(name); + Py_Initialize(); + + wchar_t const *dummy_args[] = {L"Python", NULL}; // const is needed because literals must not be modified + wchar_t const **argv = dummy_args; + int argc = sizeof(dummy_args)/sizeof(dummy_args[0])-1; + +#if PY_MAJOR_VERSION >= 3 + PySys_SetArgv(argc, const_cast<wchar_t **>(argv)); +#else + PySys_SetArgv(argc, (char **)(argv)); +#endif + +#ifndef WITHOUT_NUMPY + import_numpy(); // initialize numpy C-API +#endif + + PyObject* matplotlibname = PyString_FromString("matplotlib"); + PyObject* pyplotname = PyString_FromString("matplotlib.pyplot"); + PyObject* cmname = PyString_FromString("matplotlib.cm"); + PyObject* pylabname = PyString_FromString("pylab"); + if (!pyplotname || !pylabname || !matplotlibname || !cmname) { + throw std::runtime_error("couldnt create string"); + } + + PyObject* matplotlib = PyImport_Import(matplotlibname); + + Py_DECREF(matplotlibname); + if (!matplotlib) { + PyErr_Print(); + throw std::runtime_error("Error loading module matplotlib!"); + } + + // matplotlib.use() must be called *before* pylab, matplotlib.pyplot, + // or matplotlib.backends is imported for the first time + if (!s_backend.empty()) { + PyObject_CallMethod(matplotlib, const_cast<char*>("use"), const_cast<char*>("s"), s_backend.c_str()); + } + + + + PyObject* pymod = PyImport_Import(pyplotname); + Py_DECREF(pyplotname); + if (!pymod) { throw std::runtime_error("Error loading module matplotlib.pyplot!"); } + + s_python_colormap = PyImport_Import(cmname); + Py_DECREF(cmname); + if (!s_python_colormap) { throw std::runtime_error("Error loading module matplotlib.cm!"); } + + PyObject* pylabmod = PyImport_Import(pylabname); + Py_DECREF(pylabname); + if (!pylabmod) { throw std::runtime_error("Error loading module pylab!"); } + + s_python_function_arrow = safe_import(pymod, "arrow"); + s_python_function_show = safe_import(pymod, "show"); + s_python_function_close = safe_import(pymod, "close"); + s_python_function_draw = safe_import(pymod, "draw"); + s_python_function_pause = safe_import(pymod, "pause"); + s_python_function_figure = safe_import(pymod, "figure"); + s_python_function_fignum_exists = safe_import(pymod, "fignum_exists"); + s_python_function_plot = safe_import(pymod, "plot"); + s_python_function_quiver = safe_import(pymod, "quiver"); + s_python_function_contour = safe_import(pymod, "contour"); + s_python_function_semilogx = safe_import(pymod, "semilogx"); + s_python_function_semilogy = safe_import(pymod, "semilogy"); + s_python_function_loglog = safe_import(pymod, "loglog"); + s_python_function_fill = safe_import(pymod, "fill"); + s_python_function_fill_between = safe_import(pymod, "fill_between"); + s_python_function_hist = safe_import(pymod,"hist"); + s_python_function_scatter = safe_import(pymod,"scatter"); + s_python_function_boxplot = safe_import(pymod,"boxplot"); + s_python_function_subplot = safe_import(pymod, "subplot"); + s_python_function_subplot2grid = safe_import(pymod, "subplot2grid"); + s_python_function_legend = safe_import(pymod, "legend"); + s_python_function_xlim = safe_import(pymod, "xlim"); + s_python_function_ylim = safe_import(pymod, "ylim"); + s_python_function_title = safe_import(pymod, "title"); + s_python_function_axis = safe_import(pymod, "axis"); + s_python_function_axhline = safe_import(pymod, "axhline"); + s_python_function_axvline = safe_import(pymod, "axvline"); + s_python_function_axvspan = safe_import(pymod, "axvspan"); + s_python_function_xlabel = safe_import(pymod, "xlabel"); + s_python_function_ylabel = safe_import(pymod, "ylabel"); + s_python_function_gca = safe_import(pymod, "gca"); + s_python_function_xticks = safe_import(pymod, "xticks"); + s_python_function_yticks = safe_import(pymod, "yticks"); + s_python_function_margins = safe_import(pymod, "margins"); + s_python_function_tick_params = safe_import(pymod, "tick_params"); + s_python_function_grid = safe_import(pymod, "grid"); + s_python_function_ion = safe_import(pymod, "ion"); + s_python_function_ginput = safe_import(pymod, "ginput"); + s_python_function_save = safe_import(pylabmod, "savefig"); + s_python_function_annotate = safe_import(pymod,"annotate"); + s_python_function_cla = safe_import(pymod, "cla"); + s_python_function_clf = safe_import(pymod, "clf"); + s_python_function_errorbar = safe_import(pymod, "errorbar"); + s_python_function_tight_layout = safe_import(pymod, "tight_layout"); + s_python_function_stem = safe_import(pymod, "stem"); + s_python_function_xkcd = safe_import(pymod, "xkcd"); + s_python_function_text = safe_import(pymod, "text"); + s_python_function_suptitle = safe_import(pymod, "suptitle"); + s_python_function_bar = safe_import(pymod,"bar"); + s_python_function_barh = safe_import(pymod, "barh"); + s_python_function_colorbar = PyObject_GetAttrString(pymod, "colorbar"); + s_python_function_subplots_adjust = safe_import(pymod,"subplots_adjust"); + s_python_function_rcparams = PyObject_GetAttrString(pymod, "rcParams"); + s_python_function_spy = PyObject_GetAttrString(pymod, "spy"); +#ifndef WITHOUT_NUMPY + s_python_function_imshow = safe_import(pymod, "imshow"); +#endif + s_python_empty_tuple = PyTuple_New(0); + } + + ~_interpreter() { + Py_Finalize(); + } +}; + +} // end namespace detail + +/// Select the backend +/// +/// **NOTE:** This must be called before the first plot command to have +/// any effect. +/// +/// Mainly useful to select the non-interactive 'Agg' backend when running +/// matplotlibcpp in headless mode, for example on a machine with no display. +/// +/// See also: https://matplotlib.org/2.0.2/api/matplotlib_configuration_api.html#matplotlib.use +inline void backend(const std::string& name) +{ + detail::s_backend = name; +} + +inline bool annotate(std::string annotation, double x, double y) +{ + detail::_interpreter::get(); + + PyObject * xy = PyTuple_New(2); + PyObject * str = PyString_FromString(annotation.c_str()); + + PyTuple_SetItem(xy,0,PyFloat_FromDouble(x)); + PyTuple_SetItem(xy,1,PyFloat_FromDouble(y)); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "xy", xy); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, str); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_annotate, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); + + return res; +} + +namespace detail { + +#ifndef WITHOUT_NUMPY +// Type selector for numpy array conversion +template <typename T> struct select_npy_type { const static NPY_TYPES type = NPY_NOTYPE; }; //Default +template <> struct select_npy_type<double> { const static NPY_TYPES type = NPY_DOUBLE; }; +template <> struct select_npy_type<float> { const static NPY_TYPES type = NPY_FLOAT; }; +template <> struct select_npy_type<bool> { const static NPY_TYPES type = NPY_BOOL; }; +template <> struct select_npy_type<int8_t> { const static NPY_TYPES type = NPY_INT8; }; +template <> struct select_npy_type<int16_t> { const static NPY_TYPES type = NPY_SHORT; }; +template <> struct select_npy_type<int32_t> { const static NPY_TYPES type = NPY_INT; }; +template <> struct select_npy_type<int64_t> { const static NPY_TYPES type = NPY_INT64; }; +template <> struct select_npy_type<uint8_t> { const static NPY_TYPES type = NPY_UINT8; }; +template <> struct select_npy_type<uint16_t> { const static NPY_TYPES type = NPY_USHORT; }; +template <> struct select_npy_type<uint32_t> { const static NPY_TYPES type = NPY_ULONG; }; +template <> struct select_npy_type<uint64_t> { const static NPY_TYPES type = NPY_UINT64; }; + +// Sanity checks; comment them out or change the numpy type below if you're compiling on +// a platform where they don't apply +static_assert(sizeof(long long) == 8); +template <> struct select_npy_type<long long> { const static NPY_TYPES type = NPY_INT64; }; +static_assert(sizeof(unsigned long long) == 8); +template <> struct select_npy_type<unsigned long long> { const static NPY_TYPES type = NPY_UINT64; }; + +template<typename Numeric> +PyObject* get_array(const std::vector<Numeric>& v) +{ + npy_intp vsize = v.size(); + NPY_TYPES type = select_npy_type<Numeric>::type; + if (type == NPY_NOTYPE) { + size_t memsize = v.size()*sizeof(double); + double* dp = static_cast<double*>(::malloc(memsize)); + for (size_t i=0; i<v.size(); ++i) + dp[i] = v[i]; + PyObject* varray = PyArray_SimpleNewFromData(1, &vsize, NPY_DOUBLE, dp); + PyArray_UpdateFlags(reinterpret_cast<PyArrayObject*>(varray), NPY_ARRAY_OWNDATA); + return varray; + } + + PyObject* varray = PyArray_SimpleNewFromData(1, &vsize, type, (void*)(v.data())); + return varray; +} + + +template<typename Numeric> +PyObject* get_2darray(const std::vector<::std::vector<Numeric>>& v) +{ + if (v.size() < 1) throw std::runtime_error("get_2d_array v too small"); + + npy_intp vsize[2] = {static_cast<npy_intp>(v.size()), + static_cast<npy_intp>(v[0].size())}; + + PyArrayObject *varray = + (PyArrayObject *)PyArray_SimpleNew(2, vsize, NPY_DOUBLE); + + double *vd_begin = static_cast<double *>(PyArray_DATA(varray)); + + for (const ::std::vector<Numeric> &v_row : v) { + if (v_row.size() != static_cast<size_t>(vsize[1])) + throw std::runtime_error("Missmatched array size"); + std::copy(v_row.begin(), v_row.end(), vd_begin); + vd_begin += vsize[1]; + } + + return reinterpret_cast<PyObject *>(varray); +} + +#else // fallback if we don't have numpy: copy every element of the given vector + +template<typename Numeric> +PyObject* get_array(const std::vector<Numeric>& v) +{ + PyObject* list = PyList_New(v.size()); + for(size_t i = 0; i < v.size(); ++i) { + PyList_SetItem(list, i, PyFloat_FromDouble(v.at(i))); + } + return list; +} + +#endif // WITHOUT_NUMPY + +// sometimes, for labels and such, we need string arrays +inline PyObject * get_array(const std::vector<std::string>& strings) +{ + PyObject* list = PyList_New(strings.size()); + for (std::size_t i = 0; i < strings.size(); ++i) { + PyList_SetItem(list, i, PyString_FromString(strings[i].c_str())); + } + return list; +} + +// not all matplotlib need 2d arrays, some prefer lists of lists +template<typename Numeric> +PyObject* get_listlist(const std::vector<std::vector<Numeric>>& ll) +{ + PyObject* listlist = PyList_New(ll.size()); + for (std::size_t i = 0; i < ll.size(); ++i) { + PyList_SetItem(listlist, i, get_array(ll[i])); + } + return listlist; +} + +} // namespace detail + +/// Plot a line through the given x and y data points.. +/// +/// See: https://matplotlib.org/3.2.1/api/_as_gen/matplotlib.pyplot.plot.html +template<typename Numeric> +bool plot(const std::vector<Numeric> &x, const std::vector<Numeric> &y, const std::map<std::string, std::string>& keywords) +{ + assert(x.size() == y.size()); + + detail::_interpreter::get(); + + // using numpy arrays + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + // construct positional args + PyObject* args = PyTuple_New(2); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +// TODO - it should be possible to make this work by implementing +// a non-numpy alternative for `detail::get_2darray()`. +#ifndef WITHOUT_NUMPY +template <typename Numeric> +void plot_surface(const std::vector<::std::vector<Numeric>> &x, + const std::vector<::std::vector<Numeric>> &y, + const std::vector<::std::vector<Numeric>> &z, + const std::map<std::string, std::string> &keywords = + std::map<std::string, std::string>(), + const long fig_number=0) +{ + detail::_interpreter::get(); + + // We lazily load the modules here the first time this function is called + // because I'm not sure that we can assume "matplotlib installed" implies + // "mpl_toolkits installed" on all platforms, and we don't want to require + // it for people who don't need 3d plots. + static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; + if (!mpl_toolkitsmod) { + detail::_interpreter::get(); + + PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); + PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); + if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } + + mpl_toolkitsmod = PyImport_Import(mpl_toolkits); + Py_DECREF(mpl_toolkits); + if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } + + axis3dmod = PyImport_Import(axis3d); + Py_DECREF(axis3d); + if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } + } + + assert(x.size() == y.size()); + assert(y.size() == z.size()); + + // using numpy arrays + PyObject *xarray = detail::get_2darray(x); + PyObject *yarray = detail::get_2darray(y); + PyObject *zarray = detail::get_2darray(z); + + // construct positional args + PyObject *args = PyTuple_New(3); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + PyTuple_SetItem(args, 2, zarray); + + // Build up the kw args. + PyObject *kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "rstride", PyInt_FromLong(1)); + PyDict_SetItemString(kwargs, "cstride", PyInt_FromLong(1)); + + PyObject *python_colormap_coolwarm = PyObject_GetAttrString( + detail::_interpreter::get().s_python_colormap, "coolwarm"); + + PyDict_SetItemString(kwargs, "cmap", python_colormap_coolwarm); + + for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); + it != keywords.end(); ++it) { + if (it->first == "linewidth" || it->first == "alpha") { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyFloat_FromDouble(std::stod(it->second))); + } else { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + } + + PyObject *fig_args = PyTuple_New(1); + PyObject* fig = nullptr; + PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number)); + PyObject *fig_exists = + PyObject_CallObject( + detail::_interpreter::get().s_python_function_fignum_exists, fig_args); + if (!PyObject_IsTrue(fig_exists)) { + fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + detail::_interpreter::get().s_python_empty_tuple); + } else { + fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + fig_args); + } + Py_DECREF(fig_exists); + if (!fig) throw std::runtime_error("Call to figure() failed."); + + PyObject *gca_kwargs = PyDict_New(); + PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d")); + + PyObject *gca = PyObject_GetAttrString(fig, "gca"); + if (!gca) throw std::runtime_error("No gca"); + Py_INCREF(gca); + PyObject *axis = PyObject_Call( + gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs); + + if (!axis) throw std::runtime_error("No axis"); + Py_INCREF(axis); + + Py_DECREF(gca); + Py_DECREF(gca_kwargs); + + PyObject *plot_surface = PyObject_GetAttrString(axis, "plot_surface"); + if (!plot_surface) throw std::runtime_error("No surface"); + Py_INCREF(plot_surface); + PyObject *res = PyObject_Call(plot_surface, args, kwargs); + if (!res) throw std::runtime_error("failed surface"); + Py_DECREF(plot_surface); + + Py_DECREF(axis); + Py_DECREF(args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); +} + +template <typename Numeric> +void contour(const std::vector<::std::vector<Numeric>> &x, + const std::vector<::std::vector<Numeric>> &y, + const std::vector<::std::vector<Numeric>> &z, + const std::map<std::string, std::string> &keywords = {}) +{ + detail::_interpreter::get(); + + // using numpy arrays + PyObject *xarray = detail::get_2darray(x); + PyObject *yarray = detail::get_2darray(y); + PyObject *zarray = detail::get_2darray(z); + + // construct positional args + PyObject *args = PyTuple_New(3); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + PyTuple_SetItem(args, 2, zarray); + + // Build up the kw args. + PyObject *kwargs = PyDict_New(); + + PyObject *python_colormap_coolwarm = PyObject_GetAttrString( + detail::_interpreter::get().s_python_colormap, "coolwarm"); + + PyDict_SetItemString(kwargs, "cmap", python_colormap_coolwarm); + + for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); + it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + + PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_contour, args, kwargs); + if (!res) + throw std::runtime_error("failed contour"); + + Py_DECREF(args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); +} + +template <typename Numeric> +void spy(const std::vector<::std::vector<Numeric>> &x, + const double markersize = -1, // -1 for default matplotlib size + const std::map<std::string, std::string> &keywords = {}) +{ + detail::_interpreter::get(); + + PyObject *xarray = detail::get_2darray(x); + + PyObject *kwargs = PyDict_New(); + if (markersize != -1) { + PyDict_SetItemString(kwargs, "markersize", PyFloat_FromDouble(markersize)); + } + for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); + it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + + PyObject *plot_args = PyTuple_New(1); + PyTuple_SetItem(plot_args, 0, xarray); + + PyObject *res = PyObject_Call( + detail::_interpreter::get().s_python_function_spy, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); +} +#endif // WITHOUT_NUMPY + +template <typename Numeric> +void plot3(const std::vector<Numeric> &x, + const std::vector<Numeric> &y, + const std::vector<Numeric> &z, + const std::map<std::string, std::string> &keywords = + std::map<std::string, std::string>(), + const long fig_number=0) +{ + detail::_interpreter::get(); + + // Same as with plot_surface: We lazily load the modules here the first time + // this function is called because I'm not sure that we can assume "matplotlib + // installed" implies "mpl_toolkits installed" on all platforms, and we don't + // want to require it for people who don't need 3d plots. + static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; + if (!mpl_toolkitsmod) { + detail::_interpreter::get(); + + PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); + PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); + if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } + + mpl_toolkitsmod = PyImport_Import(mpl_toolkits); + Py_DECREF(mpl_toolkits); + if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } + + axis3dmod = PyImport_Import(axis3d); + Py_DECREF(axis3d); + if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } + } + + assert(x.size() == y.size()); + assert(y.size() == z.size()); + + PyObject *xarray = detail::get_array(x); + PyObject *yarray = detail::get_array(y); + PyObject *zarray = detail::get_array(z); + + // construct positional args + PyObject *args = PyTuple_New(3); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + PyTuple_SetItem(args, 2, zarray); + + // Build up the kw args. + PyObject *kwargs = PyDict_New(); + + for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); + it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + + PyObject *fig_args = PyTuple_New(1); + PyObject* fig = nullptr; + PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number)); + PyObject *fig_exists = + PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, fig_args); + if (!PyObject_IsTrue(fig_exists)) { + fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + detail::_interpreter::get().s_python_empty_tuple); + } else { + fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + fig_args); + } + if (!fig) throw std::runtime_error("Call to figure() failed."); + + PyObject *gca_kwargs = PyDict_New(); + PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d")); + + PyObject *gca = PyObject_GetAttrString(fig, "gca"); + if (!gca) throw std::runtime_error("No gca"); + Py_INCREF(gca); + PyObject *axis = PyObject_Call( + gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs); + + if (!axis) throw std::runtime_error("No axis"); + Py_INCREF(axis); + + Py_DECREF(gca); + Py_DECREF(gca_kwargs); + + PyObject *plot3 = PyObject_GetAttrString(axis, "plot"); + if (!plot3) throw std::runtime_error("No 3D line plot"); + Py_INCREF(plot3); + PyObject *res = PyObject_Call(plot3, args, kwargs); + if (!res) throw std::runtime_error("Failed 3D line plot"); + Py_DECREF(plot3); + + Py_DECREF(axis); + Py_DECREF(args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); +} + +template<typename Numeric> +bool stem(const std::vector<Numeric> &x, const std::vector<Numeric> &y, const std::map<std::string, std::string>& keywords) +{ + assert(x.size() == y.size()); + + detail::_interpreter::get(); + + // using numpy arrays + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + // construct positional args + PyObject* args = PyTuple_New(2); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for (std::map<std::string, std::string>::const_iterator it = + keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call( + detail::_interpreter::get().s_python_function_stem, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if (res) + Py_DECREF(res); + + return res; +} + +template< typename Numeric > +bool fill(const std::vector<Numeric>& x, const std::vector<Numeric>& y, const std::map<std::string, std::string>& keywords) +{ + assert(x.size() == y.size()); + + detail::_interpreter::get(); + + // using numpy arrays + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + // construct positional args + PyObject* args = PyTuple_New(2); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if (res) Py_DECREF(res); + + return res; +} + +template< typename Numeric > +bool fill_between(const std::vector<Numeric>& x, const std::vector<Numeric>& y1, const std::vector<Numeric>& y2, const std::map<std::string, std::string>& keywords) +{ + assert(x.size() == y1.size()); + assert(x.size() == y2.size()); + + detail::_interpreter::get(); + + // using numpy arrays + PyObject* xarray = detail::get_array(x); + PyObject* y1array = detail::get_array(y1); + PyObject* y2array = detail::get_array(y2); + + // construct positional args + PyObject* args = PyTuple_New(3); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, y1array); + PyTuple_SetItem(args, 2, y2array); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill_between, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +template <typename Numeric> +bool arrow(Numeric x, Numeric y, Numeric end_x, Numeric end_y, const std::string& fc = "r", + const std::string ec = "k", Numeric head_length = 0.25, Numeric head_width = 0.1625) { + PyObject* obj_x = PyFloat_FromDouble(x); + PyObject* obj_y = PyFloat_FromDouble(y); + PyObject* obj_end_x = PyFloat_FromDouble(end_x); + PyObject* obj_end_y = PyFloat_FromDouble(end_y); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "fc", PyString_FromString(fc.c_str())); + PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str())); + PyDict_SetItemString(kwargs, "head_width", PyFloat_FromDouble(head_width)); + PyDict_SetItemString(kwargs, "head_length", PyFloat_FromDouble(head_length)); + + PyObject* plot_args = PyTuple_New(4); + PyTuple_SetItem(plot_args, 0, obj_x); + PyTuple_SetItem(plot_args, 1, obj_y); + PyTuple_SetItem(plot_args, 2, obj_end_x); + PyTuple_SetItem(plot_args, 3, obj_end_y); + + PyObject* res = + PyObject_Call(detail::_interpreter::get().s_python_function_arrow, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if (res) + Py_DECREF(res); + + return res; +} + +template< typename Numeric> +bool hist(const std::vector<Numeric>& y, long bins=10,std::string color="b", + double alpha=1.0, bool cumulative=false) +{ + detail::_interpreter::get(); + + PyObject* yarray = detail::get_array(y); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins)); + PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str())); + PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha)); + PyDict_SetItemString(kwargs, "cumulative", cumulative ? Py_True : Py_False); + + PyObject* plot_args = PyTuple_New(1); + + PyTuple_SetItem(plot_args, 0, yarray); + + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs); + + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +#ifndef WITHOUT_NUMPY +namespace detail { + +inline void imshow(void *ptr, const NPY_TYPES type, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords, PyObject** out) +{ + assert(type == NPY_UINT8 || type == NPY_FLOAT); + assert(colors == 1 || colors == 3 || colors == 4); + + detail::_interpreter::get(); + + // construct args + npy_intp dims[3] = { rows, columns, colors }; + PyObject *args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyArray_SimpleNewFromData(colors == 1 ? 2 : 3, dims, type, ptr)); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_imshow, args, kwargs); + Py_DECREF(args); + Py_DECREF(kwargs); + if (!res) + throw std::runtime_error("Call to imshow() failed"); + if (out) + *out = res; + else + Py_DECREF(res); +} + +} // namespace detail + +inline void imshow(const unsigned char *ptr, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords = {}, PyObject** out = nullptr) +{ + detail::imshow((void *) ptr, NPY_UINT8, rows, columns, colors, keywords, out); +} + +inline void imshow(const float *ptr, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords = {}, PyObject** out = nullptr) +{ + detail::imshow((void *) ptr, NPY_FLOAT, rows, columns, colors, keywords, out); +} + +#ifdef WITH_OPENCV +void imshow(const cv::Mat &image, const std::map<std::string, std::string> &keywords = {}) +{ + // Convert underlying type of matrix, if needed + cv::Mat image2; + NPY_TYPES npy_type = NPY_UINT8; + switch (image.type() & CV_MAT_DEPTH_MASK) { + case CV_8U: + image2 = image; + break; + case CV_32F: + image2 = image; + npy_type = NPY_FLOAT; + break; + default: + image.convertTo(image2, CV_MAKETYPE(CV_8U, image.channels())); + } + + // If color image, convert from BGR to RGB + switch (image2.channels()) { + case 3: + cv::cvtColor(image2, image2, CV_BGR2RGB); + break; + case 4: + cv::cvtColor(image2, image2, CV_BGRA2RGBA); + } + + detail::imshow(image2.data, npy_type, image2.rows, image2.cols, image2.channels(), keywords); +} +#endif // WITH_OPENCV +#endif // WITHOUT_NUMPY + +template<typename NumericX, typename NumericY> +bool scatter(const std::vector<NumericX>& x, + const std::vector<NumericY>& y, + const double s=1.0, // The marker size in points**2 + const std::map<std::string, std::string> & keywords = {}) +{ + detail::_interpreter::get(); + + assert(x.size() == y.size()); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "s", PyLong_FromLong(s)); + for (const auto& it : keywords) + { + PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str())); + } + + PyObject* plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_scatter, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +template<typename NumericX, typename NumericY, typename NumericColors> + bool scatter_colored(const std::vector<NumericX>& x, + const std::vector<NumericY>& y, + const std::vector<NumericColors>& colors, + const double s=1.0, // The marker size in points**2 + const std::map<std::string, std::string> & keywords = {}) + { + detail::_interpreter::get(); + + assert(x.size() == y.size()); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + PyObject* colors_array = detail::get_array(colors); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "s", PyLong_FromLong(s)); + PyDict_SetItemString(kwargs, "c", colors_array); + + for (const auto& it : keywords) + { + PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str())); + } + + PyObject* plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_scatter, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; + } + + +template<typename NumericX, typename NumericY, typename NumericZ> +bool scatter(const std::vector<NumericX>& x, + const std::vector<NumericY>& y, + const std::vector<NumericZ>& z, + const double s=1.0, // The marker size in points**2 + const std::map<std::string, std::string> & keywords = {}, + const long fig_number=0) { + detail::_interpreter::get(); + + // Same as with plot_surface: We lazily load the modules here the first time + // this function is called because I'm not sure that we can assume "matplotlib + // installed" implies "mpl_toolkits installed" on all platforms, and we don't + // want to require it for people who don't need 3d plots. + static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; + if (!mpl_toolkitsmod) { + detail::_interpreter::get(); + + PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); + PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); + if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } + + mpl_toolkitsmod = PyImport_Import(mpl_toolkits); + Py_DECREF(mpl_toolkits); + if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } + + axis3dmod = PyImport_Import(axis3d); + Py_DECREF(axis3d); + if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } + } + + assert(x.size() == y.size()); + assert(y.size() == z.size()); + + PyObject *xarray = detail::get_array(x); + PyObject *yarray = detail::get_array(y); + PyObject *zarray = detail::get_array(z); + + // construct positional args + PyObject *args = PyTuple_New(3); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + PyTuple_SetItem(args, 2, zarray); + + // Build up the kw args. + PyObject *kwargs = PyDict_New(); + + for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); + it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + PyObject *fig_args = PyTuple_New(1); + PyObject* fig = nullptr; + PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number)); + PyObject *fig_exists = + PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, fig_args); + if (!PyObject_IsTrue(fig_exists)) { + fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + detail::_interpreter::get().s_python_empty_tuple); + } else { + fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + fig_args); + } + Py_DECREF(fig_exists); + if (!fig) throw std::runtime_error("Call to figure() failed."); + + PyObject *gca_kwargs = PyDict_New(); + PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d")); + + PyObject *gca = PyObject_GetAttrString(fig, "gca"); + if (!gca) throw std::runtime_error("No gca"); + Py_INCREF(gca); + PyObject *axis = PyObject_Call( + gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs); + + if (!axis) throw std::runtime_error("No axis"); + Py_INCREF(axis); + + Py_DECREF(gca); + Py_DECREF(gca_kwargs); + + PyObject *plot3 = PyObject_GetAttrString(axis, "scatter"); + if (!plot3) throw std::runtime_error("No 3D line plot"); + Py_INCREF(plot3); + PyObject *res = PyObject_Call(plot3, args, kwargs); + if (!res) throw std::runtime_error("Failed 3D line plot"); + Py_DECREF(plot3); + + Py_DECREF(axis); + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(fig); + if (res) Py_DECREF(res); + return res; + +} + +template<typename Numeric> +bool boxplot(const std::vector<std::vector<Numeric>>& data, + const std::vector<std::string>& labels = {}, + const std::map<std::string, std::string> & keywords = {}) +{ + detail::_interpreter::get(); + + PyObject* listlist = detail::get_listlist(data); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, listlist); + + PyObject* kwargs = PyDict_New(); + + // kwargs needs the labels, if there are (the correct number of) labels + if (!labels.empty() && labels.size() == data.size()) { + PyDict_SetItemString(kwargs, "labels", detail::get_array(labels)); + } + + // take care of the remaining keywords + for (const auto& it : keywords) + { + PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_boxplot, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); + + return res; +} + +template<typename Numeric> +bool boxplot(const std::vector<Numeric>& data, + const std::map<std::string, std::string> & keywords = {}) +{ + detail::_interpreter::get(); + + PyObject* vector = detail::get_array(data); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, vector); + + PyObject* kwargs = PyDict_New(); + for (const auto& it : keywords) + { + PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_boxplot, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); + + return res; +} + +template <typename Numeric> +bool bar(const std::vector<Numeric> & x, + const std::vector<Numeric> & y, + std::string ec = "black", + std::string ls = "-", + double lw = 1.0, + const std::map<std::string, std::string> & keywords = {}) +{ + detail::_interpreter::get(); + + PyObject * xarray = detail::get_array(x); + PyObject * yarray = detail::get_array(y); + + PyObject * kwargs = PyDict_New(); + + PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str())); + PyDict_SetItemString(kwargs, "ls", PyString_FromString(ls.c_str())); + PyDict_SetItemString(kwargs, "lw", PyFloat_FromDouble(lw)); + + for (std::map<std::string, std::string>::const_iterator it = + keywords.begin(); + it != keywords.end(); + ++it) { + PyDict_SetItemString( + kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject * plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + + PyObject * res = PyObject_Call( + detail::_interpreter::get().s_python_function_bar, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); + + return res; +} + +template <typename Numeric> +bool bar(const std::vector<Numeric> & y, + std::string ec = "black", + std::string ls = "-", + double lw = 1.0, + const std::map<std::string, std::string> & keywords = {}) +{ + using T = typename std::remove_reference<decltype(y)>::type::value_type; + + detail::_interpreter::get(); + + std::vector<T> x; + for (std::size_t i = 0; i < y.size(); i++) { x.push_back(i); } + + return bar(x, y, ec, ls, lw, keywords); +} + + +template<typename Numeric> +bool barh(const std::vector<Numeric> &x, const std::vector<Numeric> &y, std::string ec = "black", std::string ls = "-", double lw = 1.0, const std::map<std::string, std::string> &keywords = { }) { + PyObject *xarray = detail::get_array(x); + PyObject *yarray = detail::get_array(y); + + PyObject *kwargs = PyDict_New(); + + PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str())); + PyDict_SetItemString(kwargs, "ls", PyString_FromString(ls.c_str())); + PyDict_SetItemString(kwargs, "lw", PyFloat_FromDouble(lw)); + + for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject *plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + + PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_barh, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); + + return res; +} + + +inline bool subplots_adjust(const std::map<std::string, double>& keywords = {}) +{ + detail::_interpreter::get(); + + PyObject* kwargs = PyDict_New(); + for (std::map<std::string, double>::const_iterator it = + keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyFloat_FromDouble(it->second)); + } + + + PyObject* plot_args = PyTuple_New(0); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_subplots_adjust, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +template< typename Numeric> +bool named_hist(std::string label,const std::vector<Numeric>& y, long bins=10, std::string color="b", double alpha=1.0) +{ + detail::_interpreter::get(); + + PyObject* yarray = detail::get_array(y); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(label.c_str())); + PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins)); + PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str())); + PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha)); + + + PyObject* plot_args = PyTuple_New(1); + PyTuple_SetItem(plot_args, 0, yarray); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +template<typename NumericX, typename NumericY> +bool plot(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "") +{ + assert(x.size() == y.size()); + + detail::_interpreter::get(); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(s.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args); + + Py_DECREF(plot_args); + if(res) Py_DECREF(res); + + return res; +} + +template <typename NumericX, typename NumericY, typename NumericZ> +bool contour(const std::vector<NumericX>& x, const std::vector<NumericY>& y, + const std::vector<NumericZ>& z, + const std::map<std::string, std::string>& keywords = {}) { + assert(x.size() == y.size() && x.size() == z.size()); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + PyObject* zarray = detail::get_array(z); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, zarray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); + it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = + PyObject_Call(detail::_interpreter::get().s_python_function_contour, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) + Py_DECREF(res); + + return res; +} + +template<typename NumericX, typename NumericY, typename NumericU, typename NumericW> +bool quiver(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::vector<NumericU>& u, const std::vector<NumericW>& w, const std::map<std::string, std::string>& keywords = {}) +{ + assert(x.size() == y.size() && x.size() == u.size() && u.size() == w.size()); + + detail::_interpreter::get(); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + PyObject* uarray = detail::get_array(u); + PyObject* warray = detail::get_array(w); + + PyObject* plot_args = PyTuple_New(4); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, uarray); + PyTuple_SetItem(plot_args, 3, warray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call( + detail::_interpreter::get().s_python_function_quiver, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) + Py_DECREF(res); + + return res; +} + +template<typename NumericX, typename NumericY, typename NumericZ, typename NumericU, typename NumericW, typename NumericV> +bool quiver(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::vector<NumericZ>& z, const std::vector<NumericU>& u, const std::vector<NumericW>& w, const std::vector<NumericV>& v, const std::map<std::string, std::string>& keywords = {}) +{ + //set up 3d axes stuff + static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; + if (!mpl_toolkitsmod) { + detail::_interpreter::get(); + + PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); + PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); + if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } + + mpl_toolkitsmod = PyImport_Import(mpl_toolkits); + Py_DECREF(mpl_toolkits); + if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } + + axis3dmod = PyImport_Import(axis3d); + Py_DECREF(axis3d); + if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } + } + + //assert sizes match up + assert(x.size() == y.size() && x.size() == u.size() && u.size() == w.size() && x.size() == z.size() && x.size() == v.size() && u.size() == v.size()); + + //set up parameters + detail::_interpreter::get(); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + PyObject* zarray = detail::get_array(z); + PyObject* uarray = detail::get_array(u); + PyObject* warray = detail::get_array(w); + PyObject* varray = detail::get_array(v); + + PyObject* plot_args = PyTuple_New(6); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, zarray); + PyTuple_SetItem(plot_args, 3, uarray); + PyTuple_SetItem(plot_args, 4, warray); + PyTuple_SetItem(plot_args, 5, varray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + //get figure gca to enable 3d projection + PyObject *fig = + PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + detail::_interpreter::get().s_python_empty_tuple); + if (!fig) throw std::runtime_error("Call to figure() failed."); + + PyObject *gca_kwargs = PyDict_New(); + PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d")); + + PyObject *gca = PyObject_GetAttrString(fig, "gca"); + if (!gca) throw std::runtime_error("No gca"); + Py_INCREF(gca); + PyObject *axis = PyObject_Call( + gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs); + + if (!axis) throw std::runtime_error("No axis"); + Py_INCREF(axis); + Py_DECREF(gca); + Py_DECREF(gca_kwargs); + + //plot our boys bravely, plot them strongly, plot them with a wink and clap + PyObject *plot3 = PyObject_GetAttrString(axis, "quiver"); + if (!plot3) throw std::runtime_error("No 3D line plot"); + Py_INCREF(plot3); + PyObject* res = PyObject_Call( + plot3, plot_args, kwargs); + if (!res) throw std::runtime_error("Failed 3D plot"); + Py_DECREF(plot3); + Py_DECREF(axis); + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) + Py_DECREF(res); + + return res; +} + +template<typename NumericX, typename NumericY> +bool stem(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "") +{ + assert(x.size() == y.size()); + + detail::_interpreter::get(); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(s.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_stem, plot_args); + + Py_DECREF(plot_args); + if (res) + Py_DECREF(res); + + return res; +} + +template<typename NumericX, typename NumericY> +bool semilogx(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "") +{ + assert(x.size() == y.size()); + + detail::_interpreter::get(); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(s.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_semilogx, plot_args); + + Py_DECREF(plot_args); + if(res) Py_DECREF(res); + + return res; +} + +template<typename NumericX, typename NumericY> +bool semilogy(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "") +{ + assert(x.size() == y.size()); + + detail::_interpreter::get(); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(s.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_semilogy, plot_args); + + Py_DECREF(plot_args); + if(res) Py_DECREF(res); + + return res; +} + +template<typename NumericX, typename NumericY> +bool loglog(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "") +{ + assert(x.size() == y.size()); + + detail::_interpreter::get(); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(s.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_loglog, plot_args); + + Py_DECREF(plot_args); + if(res) Py_DECREF(res); + + return res; +} + +template<typename NumericX, typename NumericY> +bool errorbar(const std::vector<NumericX> &x, const std::vector<NumericY> &y, const std::vector<NumericX> &yerr, const std::map<std::string, std::string> &keywords = {}) +{ + assert(x.size() == y.size()); + + detail::_interpreter::get(); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + PyObject* yerrarray = detail::get_array(yerr); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyDict_SetItemString(kwargs, "yerr", yerrarray); + + PyObject *plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + + PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_errorbar, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + + if (res) + Py_DECREF(res); + else + throw std::runtime_error("Call to errorbar() failed."); + + return res; +} + +template<typename Numeric> +bool named_plot(const std::string& name, const std::vector<Numeric>& y, const std::string& format = "") +{ + detail::_interpreter::get(); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(2); + + PyTuple_SetItem(plot_args, 0, yarray); + PyTuple_SetItem(plot_args, 1, pystring); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) Py_DECREF(res); + + return res; +} + +template<typename NumericX, typename NumericY> +bool named_plot(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "") +{ + detail::_interpreter::get(); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) Py_DECREF(res); + + return res; +} + +template<typename NumericX, typename NumericY> +bool named_semilogx(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "") +{ + detail::_interpreter::get(); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_semilogx, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) Py_DECREF(res); + + return res; +} + +template<typename NumericX, typename NumericY> +bool named_semilogy(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "") +{ + detail::_interpreter::get(); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_semilogy, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) Py_DECREF(res); + + return res; +} + +template<typename NumericX, typename NumericY> +bool named_loglog(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "") +{ + detail::_interpreter::get(); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_loglog, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) Py_DECREF(res); + + return res; +} + +template<typename Numeric> +bool plot(const std::vector<Numeric>& y, const std::string& format = "") +{ + std::vector<Numeric> x(y.size()); + for(size_t i=0; i<x.size(); ++i) x.at(i) = i; + return plot(x,y,format); +} + +template<typename Numeric> +bool plot(const std::vector<Numeric>& y, const std::map<std::string, std::string>& keywords) +{ + std::vector<Numeric> x(y.size()); + for(size_t i=0; i<x.size(); ++i) x.at(i) = i; + return plot(x,y,keywords); +} + +template<typename Numeric> +bool stem(const std::vector<Numeric>& y, const std::string& format = "") +{ + std::vector<Numeric> x(y.size()); + for (size_t i = 0; i < x.size(); ++i) x.at(i) = i; + return stem(x, y, format); +} + +template<typename Numeric> +void text(Numeric x, Numeric y, const std::string& s = "") +{ + detail::_interpreter::get(); + + PyObject* args = PyTuple_New(3); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(x)); + PyTuple_SetItem(args, 1, PyFloat_FromDouble(y)); + PyTuple_SetItem(args, 2, PyString_FromString(s.c_str())); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_text, args); + if(!res) throw std::runtime_error("Call to text() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void colorbar(PyObject* mappable = NULL, const std::map<std::string, float>& keywords = {}) +{ + if (mappable == NULL) + throw std::runtime_error("Must call colorbar with PyObject* returned from an image, contour, surface, etc."); + + detail::_interpreter::get(); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, mappable); + + PyObject* kwargs = PyDict_New(); + for(std::map<std::string, float>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyFloat_FromDouble(it->second)); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_colorbar, args, kwargs); + if(!res) throw std::runtime_error("Call to colorbar() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + + +inline long figure(long number = -1) +{ + detail::_interpreter::get(); + + PyObject *res; + if (number == -1) + res = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, detail::_interpreter::get().s_python_empty_tuple); + else { + assert(number > 0); + + // Make sure interpreter is initialised + detail::_interpreter::get(); + + PyObject *args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyLong_FromLong(number)); + res = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, args); + Py_DECREF(args); + } + + if(!res) throw std::runtime_error("Call to figure() failed."); + + PyObject* num = PyObject_GetAttrString(res, "number"); + if (!num) throw std::runtime_error("Could not get number attribute of figure object"); + const long figureNumber = PyLong_AsLong(num); + + Py_DECREF(num); + Py_DECREF(res); + + return figureNumber; +} + +inline bool fignum_exists(long number) +{ + detail::_interpreter::get(); + + PyObject *args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyLong_FromLong(number)); + PyObject *res = PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, args); + if(!res) throw std::runtime_error("Call to fignum_exists() failed."); + + bool ret = PyObject_IsTrue(res); + Py_DECREF(res); + Py_DECREF(args); + + return ret; +} + +inline void figure_size(size_t w, size_t h) +{ + detail::_interpreter::get(); + + const size_t dpi = 100; + PyObject* size = PyTuple_New(2); + PyTuple_SetItem(size, 0, PyFloat_FromDouble((double)w / dpi)); + PyTuple_SetItem(size, 1, PyFloat_FromDouble((double)h / dpi)); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "figsize", size); + PyDict_SetItemString(kwargs, "dpi", PyLong_FromSize_t(dpi)); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_figure, + detail::_interpreter::get().s_python_empty_tuple, kwargs); + + Py_DECREF(kwargs); + + if(!res) throw std::runtime_error("Call to figure_size() failed."); + Py_DECREF(res); +} + +inline void legend() +{ + detail::_interpreter::get(); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_legend, detail::_interpreter::get().s_python_empty_tuple); + if(!res) throw std::runtime_error("Call to legend() failed."); + + Py_DECREF(res); +} + +inline void legend(const std::map<std::string, std::string>& keywords) +{ + detail::_interpreter::get(); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_legend, detail::_interpreter::get().s_python_empty_tuple, kwargs); + if(!res) throw std::runtime_error("Call to legend() failed."); + + Py_DECREF(kwargs); + Py_DECREF(res); +} + +template<typename Numeric> +inline void set_aspect(Numeric ratio) +{ + detail::_interpreter::get(); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(ratio)); + PyObject* kwargs = PyDict_New(); + + PyObject *ax = + PyObject_CallObject(detail::_interpreter::get().s_python_function_gca, + detail::_interpreter::get().s_python_empty_tuple); + if (!ax) throw std::runtime_error("Call to gca() failed."); + Py_INCREF(ax); + + PyObject *set_aspect = PyObject_GetAttrString(ax, "set_aspect"); + if (!set_aspect) throw std::runtime_error("Attribute set_aspect not found."); + Py_INCREF(set_aspect); + + PyObject *res = PyObject_Call(set_aspect, args, kwargs); + if (!res) throw std::runtime_error("Call to set_aspect() failed."); + Py_DECREF(set_aspect); + + Py_DECREF(ax); + Py_DECREF(args); + Py_DECREF(kwargs); +} + +inline void set_aspect_equal() +{ + // expect ratio == "equal". Leaving error handling to matplotlib. + detail::_interpreter::get(); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyString_FromString("equal")); + PyObject* kwargs = PyDict_New(); + + PyObject *ax = + PyObject_CallObject(detail::_interpreter::get().s_python_function_gca, + detail::_interpreter::get().s_python_empty_tuple); + if (!ax) throw std::runtime_error("Call to gca() failed."); + Py_INCREF(ax); + + PyObject *set_aspect = PyObject_GetAttrString(ax, "set_aspect"); + if (!set_aspect) throw std::runtime_error("Attribute set_aspect not found."); + Py_INCREF(set_aspect); + + PyObject *res = PyObject_Call(set_aspect, args, kwargs); + if (!res) throw std::runtime_error("Call to set_aspect() failed."); + Py_DECREF(set_aspect); + + Py_DECREF(ax); + Py_DECREF(args); + Py_DECREF(kwargs); +} + +template<typename Numeric> +void ylim(Numeric left, Numeric right) +{ + detail::_interpreter::get(); + + PyObject* list = PyList_New(2); + PyList_SetItem(list, 0, PyFloat_FromDouble(left)); + PyList_SetItem(list, 1, PyFloat_FromDouble(right)); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, list); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args); + if(!res) throw std::runtime_error("Call to ylim() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +template<typename Numeric> +void xlim(Numeric left, Numeric right) +{ + detail::_interpreter::get(); + + PyObject* list = PyList_New(2); + PyList_SetItem(list, 0, PyFloat_FromDouble(left)); + PyList_SetItem(list, 1, PyFloat_FromDouble(right)); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, list); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args); + if(!res) throw std::runtime_error("Call to xlim() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + + +inline std::array<double, 2> xlim() +{ + PyObject* args = PyTuple_New(0); + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args); + + if(!res) throw std::runtime_error("Call to xlim() failed."); + + Py_DECREF(res); + + PyObject* left = PyTuple_GetItem(res,0); + PyObject* right = PyTuple_GetItem(res,1); + return { PyFloat_AsDouble(left), PyFloat_AsDouble(right) }; +} + + +inline std::array<double, 2> ylim() +{ + PyObject* args = PyTuple_New(0); + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args); + + if(!res) throw std::runtime_error("Call to ylim() failed."); + + Py_DECREF(res); + + PyObject* left = PyTuple_GetItem(res,0); + PyObject* right = PyTuple_GetItem(res,1); + return { PyFloat_AsDouble(left), PyFloat_AsDouble(right) }; +} + +template<typename Numeric> +inline void xticks(const std::vector<Numeric> &ticks, const std::vector<std::string> &labels = {}, const std::map<std::string, std::string>& keywords = {}) +{ + assert(labels.size() == 0 || ticks.size() == labels.size()); + + detail::_interpreter::get(); + + // using numpy array + PyObject* ticksarray = detail::get_array(ticks); + + PyObject* args; + if(labels.size() == 0) { + // construct positional args + args = PyTuple_New(1); + PyTuple_SetItem(args, 0, ticksarray); + } else { + // make tuple of tick labels + PyObject* labelstuple = PyTuple_New(labels.size()); + for (size_t i = 0; i < labels.size(); i++) + PyTuple_SetItem(labelstuple, i, PyUnicode_FromString(labels[i].c_str())); + + // construct positional args + args = PyTuple_New(2); + PyTuple_SetItem(args, 0, ticksarray); + PyTuple_SetItem(args, 1, labelstuple); + } + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_xticks, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if(!res) throw std::runtime_error("Call to xticks() failed"); + + Py_DECREF(res); +} + +template<typename Numeric> +inline void xticks(const std::vector<Numeric> &ticks, const std::map<std::string, std::string>& keywords) +{ + xticks(ticks, {}, keywords); +} + +template<typename Numeric> +inline void yticks(const std::vector<Numeric> &ticks, const std::vector<std::string> &labels = {}, const std::map<std::string, std::string>& keywords = {}) +{ + assert(labels.size() == 0 || ticks.size() == labels.size()); + + detail::_interpreter::get(); + + // using numpy array + PyObject* ticksarray = detail::get_array(ticks); + + PyObject* args; + if(labels.size() == 0) { + // construct positional args + args = PyTuple_New(1); + PyTuple_SetItem(args, 0, ticksarray); + } else { + // make tuple of tick labels + PyObject* labelstuple = PyTuple_New(labels.size()); + for (size_t i = 0; i < labels.size(); i++) + PyTuple_SetItem(labelstuple, i, PyUnicode_FromString(labels[i].c_str())); + + // construct positional args + args = PyTuple_New(2); + PyTuple_SetItem(args, 0, ticksarray); + PyTuple_SetItem(args, 1, labelstuple); + } + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_yticks, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if(!res) throw std::runtime_error("Call to yticks() failed"); + + Py_DECREF(res); +} + +template<typename Numeric> +inline void yticks(const std::vector<Numeric> &ticks, const std::map<std::string, std::string>& keywords) +{ + yticks(ticks, {}, keywords); +} + +template <typename Numeric> inline void margins(Numeric margin) +{ + // construct positional args + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(margin)); + + PyObject* res = + PyObject_CallObject(detail::_interpreter::get().s_python_function_margins, args); + if (!res) + throw std::runtime_error("Call to margins() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +template <typename Numeric> inline void margins(Numeric margin_x, Numeric margin_y) +{ + // construct positional args + PyObject* args = PyTuple_New(2); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(margin_x)); + PyTuple_SetItem(args, 1, PyFloat_FromDouble(margin_y)); + + PyObject* res = + PyObject_CallObject(detail::_interpreter::get().s_python_function_margins, args); + if (!res) + throw std::runtime_error("Call to margins() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + + +inline void tick_params(const std::map<std::string, std::string>& keywords, const std::string axis = "both") +{ + detail::_interpreter::get(); + + // construct positional args + PyObject* args; + args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyString_FromString(axis.c_str())); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_tick_params, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if (!res) throw std::runtime_error("Call to tick_params() failed"); + + Py_DECREF(res); +} + +inline void subplot(long nrows, long ncols, long plot_number) +{ + detail::_interpreter::get(); + + // construct positional args + PyObject* args = PyTuple_New(3); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(nrows)); + PyTuple_SetItem(args, 1, PyFloat_FromDouble(ncols)); + PyTuple_SetItem(args, 2, PyFloat_FromDouble(plot_number)); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_subplot, args); + if(!res) throw std::runtime_error("Call to subplot() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void subplot2grid(long nrows, long ncols, long rowid=0, long colid=0, long rowspan=1, long colspan=1) +{ + detail::_interpreter::get(); + + PyObject* shape = PyTuple_New(2); + PyTuple_SetItem(shape, 0, PyLong_FromLong(nrows)); + PyTuple_SetItem(shape, 1, PyLong_FromLong(ncols)); + + PyObject* loc = PyTuple_New(2); + PyTuple_SetItem(loc, 0, PyLong_FromLong(rowid)); + PyTuple_SetItem(loc, 1, PyLong_FromLong(colid)); + + PyObject* args = PyTuple_New(4); + PyTuple_SetItem(args, 0, shape); + PyTuple_SetItem(args, 1, loc); + PyTuple_SetItem(args, 2, PyLong_FromLong(rowspan)); + PyTuple_SetItem(args, 3, PyLong_FromLong(colspan)); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_subplot2grid, args); + if(!res) throw std::runtime_error("Call to subplot2grid() failed."); + + Py_DECREF(shape); + Py_DECREF(loc); + Py_DECREF(args); + Py_DECREF(res); +} + +inline void title(const std::string &titlestr, const std::map<std::string, std::string> &keywords = {}) +{ + detail::_interpreter::get(); + + PyObject* pytitlestr = PyString_FromString(titlestr.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pytitlestr); + + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_title, args, kwargs); + if(!res) throw std::runtime_error("Call to title() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + +inline void suptitle(const std::string &suptitlestr, const std::map<std::string, std::string> &keywords = {}) +{ + detail::_interpreter::get(); + + PyObject* pysuptitlestr = PyString_FromString(suptitlestr.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pysuptitlestr); + + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_suptitle, args, kwargs); + if(!res) throw std::runtime_error("Call to suptitle() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + +inline void axis(const std::string &axisstr) +{ + detail::_interpreter::get(); + + PyObject* str = PyString_FromString(axisstr.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, str); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_axis, args); + if(!res) throw std::runtime_error("Call to title() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void axhline(double y, double xmin = 0., double xmax = 1., const std::map<std::string, std::string>& keywords = std::map<std::string, std::string>()) +{ + detail::_interpreter::get(); + + // construct positional args + PyObject* args = PyTuple_New(3); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(y)); + PyTuple_SetItem(args, 1, PyFloat_FromDouble(xmin)); + PyTuple_SetItem(args, 2, PyFloat_FromDouble(xmax)); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axhline, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); +} + +inline void axvline(double x, double ymin = 0., double ymax = 1., const std::map<std::string, std::string>& keywords = std::map<std::string, std::string>()) +{ + detail::_interpreter::get(); + + // construct positional args + PyObject* args = PyTuple_New(3); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(x)); + PyTuple_SetItem(args, 1, PyFloat_FromDouble(ymin)); + PyTuple_SetItem(args, 2, PyFloat_FromDouble(ymax)); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axvline, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); +} + +inline void axvspan(double xmin, double xmax, double ymin = 0., double ymax = 1., const std::map<std::string, std::string>& keywords = std::map<std::string, std::string>()) +{ + // construct positional args + PyObject* args = PyTuple_New(4); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(xmin)); + PyTuple_SetItem(args, 1, PyFloat_FromDouble(xmax)); + PyTuple_SetItem(args, 2, PyFloat_FromDouble(ymin)); + PyTuple_SetItem(args, 3, PyFloat_FromDouble(ymax)); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + if (it->first == "linewidth" || it->first == "alpha") { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyFloat_FromDouble(std::stod(it->second))); + } else { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axvspan, args, kwargs); + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); +} + +inline void xlabel(const std::string &str, const std::map<std::string, std::string> &keywords = {}) +{ + detail::_interpreter::get(); + + PyObject* pystr = PyString_FromString(str.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pystr); + + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_xlabel, args, kwargs); + if(!res) throw std::runtime_error("Call to xlabel() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + +inline void ylabel(const std::string &str, const std::map<std::string, std::string>& keywords = {}) +{ + detail::_interpreter::get(); + + PyObject* pystr = PyString_FromString(str.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pystr); + + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_ylabel, args, kwargs); + if(!res) throw std::runtime_error("Call to ylabel() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + +inline void set_zlabel(const std::string &str, const std::map<std::string, std::string>& keywords = {}) +{ + detail::_interpreter::get(); + + // Same as with plot_surface: We lazily load the modules here the first time + // this function is called because I'm not sure that we can assume "matplotlib + // installed" implies "mpl_toolkits installed" on all platforms, and we don't + // want to require it for people who don't need 3d plots. + static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; + if (!mpl_toolkitsmod) { + PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); + PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); + if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } + + mpl_toolkitsmod = PyImport_Import(mpl_toolkits); + Py_DECREF(mpl_toolkits); + if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } + + axis3dmod = PyImport_Import(axis3d); + Py_DECREF(axis3d); + if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } + } + + PyObject* pystr = PyString_FromString(str.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pystr); + + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject *ax = + PyObject_CallObject(detail::_interpreter::get().s_python_function_gca, + detail::_interpreter::get().s_python_empty_tuple); + if (!ax) throw std::runtime_error("Call to gca() failed."); + Py_INCREF(ax); + + PyObject *zlabel = PyObject_GetAttrString(ax, "set_zlabel"); + if (!zlabel) throw std::runtime_error("Attribute set_zlabel not found."); + Py_INCREF(zlabel); + + PyObject *res = PyObject_Call(zlabel, args, kwargs); + if (!res) throw std::runtime_error("Call to set_zlabel() failed."); + Py_DECREF(zlabel); + + Py_DECREF(ax); + Py_DECREF(args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); +} + +inline void grid(bool flag) +{ + detail::_interpreter::get(); + + PyObject* pyflag = flag ? Py_True : Py_False; + Py_INCREF(pyflag); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pyflag); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_grid, args); + if(!res) throw std::runtime_error("Call to grid() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void show(const bool block = true) +{ + detail::_interpreter::get(); + + PyObject* res; + if(block) + { + res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_show, + detail::_interpreter::get().s_python_empty_tuple); + } + else + { + PyObject *kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "block", Py_False); + res = PyObject_Call( detail::_interpreter::get().s_python_function_show, detail::_interpreter::get().s_python_empty_tuple, kwargs); + Py_DECREF(kwargs); + } + + + if (!res) throw std::runtime_error("Call to show() failed."); + + Py_DECREF(res); +} + +inline void close() +{ + detail::_interpreter::get(); + + PyObject* res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_close, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) throw std::runtime_error("Call to close() failed."); + + Py_DECREF(res); +} + +inline void xkcd() { + detail::_interpreter::get(); + + PyObject* res; + PyObject *kwargs = PyDict_New(); + + res = PyObject_Call(detail::_interpreter::get().s_python_function_xkcd, + detail::_interpreter::get().s_python_empty_tuple, kwargs); + + Py_DECREF(kwargs); + + if (!res) + throw std::runtime_error("Call to show() failed."); + + Py_DECREF(res); +} + +inline void draw() +{ + detail::_interpreter::get(); + + PyObject* res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_draw, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) throw std::runtime_error("Call to draw() failed."); + + Py_DECREF(res); +} + +template<typename Numeric> +inline void pause(Numeric interval) +{ + detail::_interpreter::get(); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(interval)); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_pause, args); + if(!res) throw std::runtime_error("Call to pause() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void save(const std::string& filename, const int dpi=0) +{ + detail::_interpreter::get(); + + PyObject* pyfilename = PyString_FromString(filename.c_str()); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pyfilename); + + PyObject* kwargs = PyDict_New(); + + if(dpi > 0) + { + PyDict_SetItemString(kwargs, "dpi", PyLong_FromLong(dpi)); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_save, args, kwargs); + if (!res) throw std::runtime_error("Call to save() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + +inline void rcparams(const std::map<std::string, std::string>& keywords = {}) { + detail::_interpreter::get(); + PyObject* args = PyTuple_New(0); + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + if ("text.usetex" == it->first) + PyDict_SetItemString(kwargs, it->first.c_str(), PyLong_FromLong(std::stoi(it->second.c_str()))); + else PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject * update = PyObject_GetAttrString(detail::_interpreter::get().s_python_function_rcparams, "update"); + PyObject * res = PyObject_Call(update, args, kwargs); + if(!res) throw std::runtime_error("Call to rcParams.update() failed."); + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(update); + Py_DECREF(res); +} + +inline void clf() { + detail::_interpreter::get(); + + PyObject *res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_clf, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) throw std::runtime_error("Call to clf() failed."); + + Py_DECREF(res); +} + +inline void cla() { + detail::_interpreter::get(); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_cla, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) + throw std::runtime_error("Call to cla() failed."); + + Py_DECREF(res); +} + +inline void ion() { + detail::_interpreter::get(); + + PyObject *res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_ion, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) throw std::runtime_error("Call to ion() failed."); + + Py_DECREF(res); +} + +inline std::vector<std::array<double, 2>> ginput(const int numClicks = 1, const std::map<std::string, std::string>& keywords = {}) +{ + detail::_interpreter::get(); + + PyObject *args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyLong_FromLong(numClicks)); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call( + detail::_interpreter::get().s_python_function_ginput, args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(args); + if (!res) throw std::runtime_error("Call to ginput() failed."); + + const size_t len = PyList_Size(res); + std::vector<std::array<double, 2>> out; + out.reserve(len); + for (size_t i = 0; i < len; i++) { + PyObject *current = PyList_GetItem(res, i); + std::array<double, 2> position; + position[0] = PyFloat_AsDouble(PyTuple_GetItem(current, 0)); + position[1] = PyFloat_AsDouble(PyTuple_GetItem(current, 1)); + out.push_back(position); + } + Py_DECREF(res); + + return out; +} + +// Actually, is there any reason not to call this automatically for every plot? +inline void tight_layout() { + detail::_interpreter::get(); + + PyObject *res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_tight_layout, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) throw std::runtime_error("Call to tight_layout() failed."); + + Py_DECREF(res); +} + +// Support for variadic plot() and initializer lists: + +namespace detail { + +template<typename T> +using is_function = typename std::is_function<std::remove_pointer<std::remove_reference<T>>>::type; + +template<bool obj, typename T> +struct is_callable_impl; + +template<typename T> +struct is_callable_impl<false, T> +{ + typedef is_function<T> type; +}; // a non-object is callable iff it is a function + +template<typename T> +struct is_callable_impl<true, T> +{ + struct Fallback { void operator()(); }; + struct Derived : T, Fallback { }; + + template<typename U, U> struct Check; + + template<typename U> + static std::true_type test( ... ); // use a variadic function to make sure (1) it accepts everything and (2) its always the worst match + + template<typename U> + static std::false_type test( Check<void(Fallback::*)(), &U::operator()>* ); + +public: + typedef decltype(test<Derived>(nullptr)) type; + typedef decltype(&Fallback::operator()) dtype; + static constexpr bool value = type::value; +}; // an object is callable iff it defines operator() + +template<typename T> +struct is_callable +{ + // dispatch to is_callable_impl<true, T> or is_callable_impl<false, T> depending on whether T is of class type or not + typedef typename is_callable_impl<std::is_class<T>::value, T>::type type; +}; + +template<typename IsYDataCallable> +struct plot_impl { }; + +template<> +struct plot_impl<std::false_type> +{ + template<typename IterableX, typename IterableY> + bool operator()(const IterableX& x, const IterableY& y, const std::string& format) + { + detail::_interpreter::get(); + + // 2-phase lookup for distance, begin, end + using std::distance; + using std::begin; + using std::end; + + auto xs = distance(begin(x), end(x)); + auto ys = distance(begin(y), end(y)); + assert(xs == ys && "x and y data must have the same number of elements!"); + + PyObject* xlist = PyList_New(xs); + PyObject* ylist = PyList_New(ys); + PyObject* pystring = PyString_FromString(format.c_str()); + + auto itx = begin(x), ity = begin(y); + for(size_t i = 0; i < xs; ++i) { + PyList_SetItem(xlist, i, PyFloat_FromDouble(*itx++)); + PyList_SetItem(ylist, i, PyFloat_FromDouble(*ity++)); + } + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xlist); + PyTuple_SetItem(plot_args, 1, ylist); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args); + + Py_DECREF(plot_args); + if(res) Py_DECREF(res); + + return res; + } +}; + +template<> +struct plot_impl<std::true_type> +{ + template<typename Iterable, typename Callable> + bool operator()(const Iterable& ticks, const Callable& f, const std::string& format) + { + if(begin(ticks) == end(ticks)) return true; + + // We could use additional meta-programming to deduce the correct element type of y, + // but all values have to be convertible to double anyways + std::vector<double> y; + for(auto x : ticks) y.push_back(f(x)); + return plot_impl<std::false_type>()(ticks,y,format); + } +}; + +} // end namespace detail + +// recursion stop for the above +template<typename... Args> +bool plot() { return true; } + +template<typename A, typename B, typename... Args> +bool plot(const A& a, const B& b, const std::string& format, Args... args) +{ + return detail::plot_impl<typename detail::is_callable<B>::type>()(a,b,format) && plot(args...); +} + +/* + * This group of plot() functions is needed to support initializer lists, i.e. calling + * plot( {1,2,3,4} ) + */ +inline bool plot(const std::vector<double>& x, const std::vector<double>& y, const std::string& format = "") { + return plot<double,double>(x,y,format); +} + +inline bool plot(const std::vector<double>& y, const std::string& format = "") { + return plot<double>(y,format); +} + +inline bool plot(const std::vector<double>& x, const std::vector<double>& y, const std::map<std::string, std::string>& keywords) { + return plot<double>(x,y,keywords); +} + +/* + * This class allows dynamic plots, ie changing the plotted data without clearing and re-plotting + */ +class Plot +{ +public: + // default initialization with plot label, some data and format + template<typename Numeric> + Plot(const std::string& name, const std::vector<Numeric>& x, const std::vector<Numeric>& y, const std::string& format = "") { + detail::_interpreter::get(); + + assert(x.size() == y.size()); + + PyObject* kwargs = PyDict_New(); + if(name != "") + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + + if(res) + { + line= PyList_GetItem(res, 0); + + if(line) + set_data_fct = PyObject_GetAttrString(line,"set_data"); + else + Py_DECREF(line); + Py_DECREF(res); + } + } + + // shorter initialization with name or format only + // basically calls line, = plot([], []) + Plot(const std::string& name = "", const std::string& format = "") + : Plot(name, std::vector<double>(), std::vector<double>(), format) {} + + template<typename Numeric> + bool update(const std::vector<Numeric>& x, const std::vector<Numeric>& y) { + assert(x.size() == y.size()); + if(set_data_fct) + { + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + + PyObject* res = PyObject_CallObject(set_data_fct, plot_args); + if (res) Py_DECREF(res); + return res; + } + return false; + } + + // clears the plot but keep it available + bool clear() { + return update(std::vector<double>(), std::vector<double>()); + } + + // definitely remove this line + void remove() { + if(line) + { + auto remove_fct = PyObject_GetAttrString(line,"remove"); + PyObject* args = PyTuple_New(0); + PyObject* res = PyObject_CallObject(remove_fct, args); + if (res) Py_DECREF(res); + } + decref(); + } + + ~Plot() { + decref(); + } +private: + + void decref() { + if(line) + Py_DECREF(line); + if(set_data_fct) + Py_DECREF(set_data_fct); + } + + + PyObject* line = nullptr; + PyObject* set_data_fct = nullptr; +}; + +} // end namespace matplotlibcpp