diff --git a/include/crocoddyl/core/action-base.hpp b/include/crocoddyl/core/action-base.hpp
index 2909018454c6fae93a6c225ded2b620fb59e0a61..7ce25312a279eb568ba3e38931a205a7ab2d14cd 100644
--- a/include/crocoddyl/core/action-base.hpp
+++ b/include/crocoddyl/core/action-base.hpp
@@ -41,10 +41,10 @@ class ActionModelAbstract {
   StateAbstract& get_state() const;
 
  protected:
-  unsigned int nu_; //!< Control dimension
-  unsigned int nr_; //!< Dimension of the cost residual
-  StateAbstract& state_; //!< Model of the state
-  Eigen::VectorXd unone_; //!< Neutral state
+  unsigned int nu_;        //!< Control dimension
+  unsigned int nr_;        //!< Dimension of the cost residual
+  StateAbstract& state_;   //!< Model of the state
+  Eigen::VectorXd unone_;  //!< Neutral state
 
 #ifdef PYTHON_BINDINGS
 
diff --git a/include/crocoddyl/core/numdiff/action.hpp b/include/crocoddyl/core/numdiff/action.hpp
index 0ae52a8975d2df9b428a01fafd47db5e6d675126..2253a9811e49298cb6336ec4a48e0267b45cddc2 100644
--- a/include/crocoddyl/core/numdiff/action.hpp
+++ b/include/crocoddyl/core/numdiff/action.hpp
@@ -17,13 +17,13 @@ namespace crocoddyl {
 
 /**
  * @brief This class computes the numerical differentiation of an ActionModel.
- * 
+ *
  * It computes the same quantity as a normal model would do but using numerical
  * differentiation.
  * The subtility is in the computation of the Hessian of the cost. Let us
  * concider that the ActionModel owns a cost residual. This means that the cost
- * is the square of a residual \f$ l(x,u) = .5 r(x,u)**2 \f$, with 
- * \f$ r(x,u) \f$ being a vector. Therefore the derivatives of the cost 
+ * is the square of a residual \f$ l(x,u) = .5 r(x,u)**2 \f$, with
+ * \f$ r(x,u) \f$ being a vector. Therefore the derivatives of the cost
  * \f$ l \f$ can be expressed in function of the derivatives of the residuals
  * (jacobians), denoted by \f$ R_x \f$ and \f$ R_u \f$. Which would be:
  * \f{eqnarray*}{
@@ -49,8 +49,8 @@ class ActionModelNumDiff : public ActionModelAbstract {
  public:
   /**
    * @brief Construct a new ActionModelNumDiff object
-   * 
-   * @param model 
+   *
+   * @param model
    * @param with_gauss_approx defines if we use the Gauss approximation of the
    * cost hessian or not.
    */
@@ -60,12 +60,12 @@ class ActionModelNumDiff : public ActionModelAbstract {
   void calc(const boost::shared_ptr<ActionDataAbstract>& data, const Eigen::Ref<const Eigen::VectorXd>& x,
             const Eigen::Ref<const Eigen::VectorXd>& u);
   /**
-   * @brief calcDiff computes the 
-   * 
-   * @param data 
-   * @param x 
-   * @param u 
-   * @param recalc 
+   * @brief calcDiff computes the
+   *
+   * @param data
+   * @param x
+   * @param u
+   * @param recalc
    */
   void calcDiff(const boost::shared_ptr<ActionDataAbstract>& data, const Eigen::Ref<const Eigen::VectorXd>& x,
                 const Eigen::Ref<const Eigen::VectorXd>& u, const bool& recalc = true);
@@ -127,14 +127,16 @@ struct ActionDataNumDiff : public ActionDataAbstract {
     }
   }
 
-  Eigen::MatrixXd Rx; //!< Cost residual jacobian: d r / dx
-  Eigen::MatrixXd Ru; //!< Cost residual jacobian: d r / du
-  Eigen::VectorXd dx; //!< State disturbance
-  Eigen::VectorXd du; //!< Control disturbance
-  Eigen::VectorXd xp; //!< The integrated state from the disturbance on one DoF "\f$ \int x dx_i \f$"
-  boost::shared_ptr<ActionDataAbstract> data_0; //!< The data that contains the final results
-  std::vector<boost::shared_ptr<ActionDataAbstract> > data_x; //!< The temporary data associated with the state variation
-  std::vector<boost::shared_ptr<ActionDataAbstract> > data_u; //!< The temporary data associated with the control variation
+  Eigen::MatrixXd Rx;  //!< Cost residual jacobian: d r / dx
+  Eigen::MatrixXd Ru;  //!< Cost residual jacobian: d r / du
+  Eigen::VectorXd dx;  //!< State disturbance
+  Eigen::VectorXd du;  //!< Control disturbance
+  Eigen::VectorXd xp;  //!< The integrated state from the disturbance on one DoF "\f$ \int x dx_i \f$"
+  boost::shared_ptr<ActionDataAbstract> data_0;  //!< The data that contains the final results
+  std::vector<boost::shared_ptr<ActionDataAbstract> >
+      data_x;  //!< The temporary data associated with the state variation
+  std::vector<boost::shared_ptr<ActionDataAbstract> >
+      data_u;  //!< The temporary data associated with the control variation
 };
 
 }  // namespace crocoddyl
diff --git a/src/core/numdiff/action.cpp b/src/core/numdiff/action.cpp
index 82418e3bf815f15907bca5419fd89ad038870cb1..de077f566d39f902b16f5c1623ee8d6c6877e586 100644
--- a/src/core/numdiff/action.cpp
+++ b/src/core/numdiff/action.cpp
@@ -76,7 +76,7 @@ void ActionModelNumDiff::calcDiff(const boost::shared_ptr<ActionDataAbstract>& d
     model_.get_state().diff(xn0, xn, data_nd->Fu.col(iu));
 
     data->Lu(iu) = (c - c0) / disturbance_;
-    if (with_gauss_approx_) {  
+    if (with_gauss_approx_) {
       data_nd->Ru.col(iu) = (data_nd->data_u[iu]->r - data_nd->data_0->r) / disturbance_;
     }
     data_nd->du(iu) = 0.0;
@@ -87,14 +87,11 @@ void ActionModelNumDiff::calcDiff(const boost::shared_ptr<ActionDataAbstract>& d
     data->Lxx = data_nd->Rx.transpose() * data_nd->Rx;
     data->Lxu = data_nd->Rx.transpose() * data_nd->Ru;
     data->Luu = data_nd->Ru.transpose() * data_nd->Ru;
-  }
-  else
-  {
+  } else {
     data->Lxx.fill(0.0);
     data->Lxu.fill(0.0);
     data->Luu.fill(0.0);
   }
-  
 }
 
 ActionModelAbstract& ActionModelNumDiff::get_model() const { return model_; }
diff --git a/unittest/test_actions.cpp b/unittest/test_actions.cpp
index c3e44b68eac3fb20e97eb4e9af8338019e5f3ba6..367c9a8181d89eb847b35ae47e8803310d0f5640 100644
--- a/unittest/test_actions.cpp
+++ b/unittest/test_actions.cpp
@@ -79,7 +79,7 @@ void test_partial_derivatives_against_numdiff(crocoddyl::ActionModelAbstract& mo
     BOOST_CHECK((data->Lxx - data_num_diff->Lxx).isMuchSmallerThan(1.0, tol));
     BOOST_CHECK((data->Lxu - data_num_diff->Lxu).isMuchSmallerThan(1.0, tol));
     BOOST_CHECK((data->Luu - data_num_diff->Luu).isMuchSmallerThan(1.0, tol));
-  }else{
+  } else {
     BOOST_CHECK((data_num_diff->Lxx).isMuchSmallerThan(1.0, tol));
     BOOST_CHECK((data_num_diff->Lxu).isMuchSmallerThan(1.0, tol));
     BOOST_CHECK((data_num_diff->Luu).isMuchSmallerThan(1.0, tol));