From 1eee95336069988e2aac159d026ee63ddaccb626 Mon Sep 17 00:00:00 2001 From: Antonio Andriella <aandriella@iri.upc.edu> Date: Mon, 21 Sep 2020 22:57:00 +0200 Subject: [PATCH] working version including new function to read real_time variables and update them into the model --- main.py | 228 +++++++++++++++++++++++++++++++------------------------- 1 file changed, 126 insertions(+), 102 deletions(-) diff --git a/main.py b/main.py index 66133a8..0eb7e52 100644 --- a/main.py +++ b/main.py @@ -3,7 +3,7 @@ import os import bnlearn import numpy as np #import classes and modules -from bn_variables import Robot_Assistance, Robot_Feedback, User_Action, User_React_time, Game_State, Attempt +from bn_variables import Agent_Assistance, Agent_Feedback, User_Action, User_React_time, Game_State, Attempt import bn_functions import utils import episode as ep @@ -47,7 +47,7 @@ def compute_next_state(user_action, task_progress_counter, attempt_counter, corr elif user_action == 0 and attempt_counter < max_attempt_per_object: attempt_counter += 1 timeout_counter += 1 - # the robot or therapist makes the correct move on the patient's behalf + # the agent or therapist makes the correct move on the patient's behalf else: attempt_counter = 1 max_attempt_counter += 1 @@ -75,9 +75,9 @@ def compute_next_state(user_action, task_progress_counter, attempt_counter, corr def simulation(bn_model_user_action, var_user_action_target_action, bn_model_user_react_time, var_user_react_time_target_action, user_memory_name, user_memory_value, user_attention_name, user_attention_value, user_reactivity_name, user_reactivity_value, - task_progress_name, game_attempt_name, robot_assistance_name, robot_feedback_name, - bn_model_robot_assistance, var_robot_assistance_target_action, bn_model_robot_feedback, - var_robot_feedback_target_action, + task_progress_name, game_attempt_name, agent_assistance_name, agent_feedback_name, + bn_model_agent_assistance, var_agent_assistance_target_action, bn_model_agent_feedback, + var_agent_feedback_target_action, bn_model_other_user_action, var_other_user_action_target_action, bn_model_other_user_react_time, var_other_user_target_react_time_action, other_user_memory_name, other_user_memory_value, @@ -94,25 +94,25 @@ def simulation(bn_model_user_action, var_user_action_target_action, bn_model_use n_timeout_per_episode: ''' - #TODO: remove robot_assistance_vect and robot_feedback_vect + #TODO: remove agent_assistance_vect and agent_feedback_vect #metrics we need, in order to compute afterwords the belief attempt_counter_per_action = [[0 for i in range(Attempt.counter.value)] for j in range(User_Action.counter.value)] game_state_counter_per_action = [[0 for i in range(Game_State.counter.value)] for j in range(User_Action.counter.value)] - robot_feedback_per_action = [[0 for i in range(Robot_Feedback.counter.value)] for j in range(User_Action.counter.value)] - robot_assistance_per_action = [[0 for i in range(Robot_Assistance.counter.value)] for j in range(User_Action.counter.value)] + agent_feedback_per_action = [[0 for i in range(Agent_Feedback.counter.value)] for j in range(User_Action.counter.value)] + agent_assistance_per_action = [[0 for i in range(Agent_Assistance.counter.value)] for j in range(User_Action.counter.value)] attempt_counter_per_react_time = [[0 for i in range(Attempt.counter.value)] for j in range(User_React_time.counter.value)] game_state_counter_per_react_time = [[0 for i in range(Game_State.counter.value)] for j in range(User_React_time.counter.value)] - robot_feedback_per_react_time = [[0 for i in range(Robot_Feedback.counter.value)] for j in range(User_React_time.counter.value)] - robot_assistance_per_react_time = [[0 for i in range(Robot_Assistance.counter.value)] for j in range(User_React_time.counter.value)] + agent_feedback_per_react_time = [[0 for i in range(Agent_Feedback.counter.value)] for j in range(User_React_time.counter.value)] + agent_assistance_per_react_time = [[0 for i in range(Agent_Assistance.counter.value)] for j in range(User_React_time.counter.value)] - game_state_counter_per_robot_assistance = [[0 for i in range(Game_State.counter.value)] for j in range(Robot_Assistance.counter.value)] - attempt_counter_per_robot_assistance = [[0 for i in range(Attempt.counter.value)] for j in range(Robot_Assistance.counter.value)] + game_state_counter_per_agent_assistance = [[0 for i in range(Game_State.counter.value)] for j in range(Agent_Assistance.counter.value)] + attempt_counter_per_agent_assistance = [[0 for i in range(Attempt.counter.value)] for j in range(Agent_Assistance.counter.value)] - game_state_counter_per_robot_feedback = [[0 for i in range(Game_State.counter.value)] for j in range(Robot_Feedback.counter.value)] - attempt_counter_per_robot_feedback = [[0 for i in range(Attempt.counter.value)] for j in range(Robot_Feedback.counter.value)] + game_state_counter_per_agent_feedback = [[0 for i in range(Game_State.counter.value)] for j in range(Agent_Feedback.counter.value)] + attempt_counter_per_agent_feedback = [[0 for i in range(Attempt.counter.value)] for j in range(Agent_Feedback.counter.value)] #output variables: @@ -121,8 +121,8 @@ def simulation(bn_model_user_action, var_user_action_target_action, bn_model_use n_timeout_per_episode = [0]*epochs n_max_attempt_per_episode = [0]*epochs game_performance_episode = [0]*epochs - n_assistance_lev_per_episode = [[0 for i in range(Robot_Assistance.counter.value)] for j in range(epochs)] - n_feedback_per_episode = [[0 for i in range(Robot_Feedback.counter.value)] for j in range(epochs)] + n_assistance_lev_per_episode = [[0 for i in range(Agent_Assistance.counter.value)] for j in range(epochs)] + n_feedback_per_episode = [[0 for i in range(Agent_Feedback.counter.value)] for j in range(epochs)] n_react_time_per_episode = [[0 for i in range(User_React_time.counter.value)] for j in range(epochs)] @@ -144,19 +144,19 @@ def simulation(bn_model_user_action, var_user_action_target_action, bn_model_use #The following variables are used to update the BN at the end of the episode user_action_dynamic_variables = {'attempt': attempt_counter_per_action, 'game_state': game_state_counter_per_action, - 'robot_assistance': robot_assistance_per_action, - 'robot_feedback': robot_feedback_per_action} + 'agent_assistance': agent_assistance_per_action, + 'agent_feedback': agent_feedback_per_action} user_react_time_dynamic_variables = {'attempt': attempt_counter_per_react_time, 'game_state': game_state_counter_per_react_time, - 'robot_assistance': robot_assistance_per_react_time, - 'robot_feedback': robot_feedback_per_react_time} + 'agent_assistance': agent_assistance_per_react_time, + 'agent_feedback': agent_feedback_per_react_time} - robot_assistance_dynamic_variables = {'attempt': attempt_counter_per_robot_assistance, - 'game_state': game_state_counter_per_robot_assistance} + agent_assistance_dynamic_variables = {'attempt': attempt_counter_per_agent_assistance, + 'game_state': game_state_counter_per_agent_assistance} - robot_feedback_dynamic_variables = {'attempt': attempt_counter_per_robot_feedback, - 'game_state': game_state_counter_per_robot_feedback} + agent_feedback_dynamic_variables = {'attempt': attempt_counter_per_agent_feedback, + 'game_state': game_state_counter_per_agent_feedback} #data structure to memorise the sequence of states (state, action, next_state) episode = [] @@ -168,30 +168,30 @@ def simulation(bn_model_user_action, var_user_action_target_action, bn_model_use current_state = (game_state_counter, attempt_counter, selected_user_action) ##################QUERY FOR THE ROBOT ASSISTANCE AND FEEDBACK################## - vars_robot_evidence = { + vars_agent_evidence = { user_reactivity_name: user_reactivity_value, user_memory_name: user_memory_value, task_progress_name: game_state_counter, game_attempt_name: attempt_counter-1, } - query_robot_assistance_prob = bn_functions.infer_prob_from_state(bn_model_robot_assistance, - infer_variable=var_robot_assistance_target_action, - evidence_variables=vars_robot_evidence) + query_agent_assistance_prob = bn_functions.infer_prob_from_state(bn_model_agent_assistance, + infer_variable=var_agent_assistance_target_action, + evidence_variables=vars_agent_evidence) - query_robot_feedback_prob = bn_functions.infer_prob_from_state(bn_model_robot_feedback, - infer_variable=var_robot_feedback_target_action, - evidence_variables=vars_robot_evidence) + query_agent_feedback_prob = bn_functions.infer_prob_from_state(bn_model_agent_feedback, + infer_variable=var_agent_feedback_target_action, + evidence_variables=vars_agent_evidence) - selected_robot_assistance_action = bn_functions.get_stochastic_action(query_robot_assistance_prob.values) - selected_robot_feedback_action = bn_functions.get_stochastic_action(query_robot_feedback_prob.values) + selected_agent_assistance_action = bn_functions.get_stochastic_action(query_agent_assistance_prob.values) + selected_agent_feedback_action = bn_functions.get_stochastic_action(query_agent_feedback_prob.values) #counters for plots - n_assistance_lev_per_episode[e][selected_robot_assistance_action] += 1 - n_feedback_per_episode[e][selected_robot_feedback_action] += 1 - current_robot_action = (selected_robot_assistance_action, selected_robot_feedback_action) + n_assistance_lev_per_episode[e][selected_agent_assistance_action] += 1 + n_feedback_per_episode[e][selected_agent_feedback_action] += 1 + current_agent_action = (selected_agent_assistance_action, selected_agent_feedback_action) - print("robot_assistance {}, attempt {}, game {}, robot_feedback {}".format(selected_robot_assistance_action, attempt_counter, game_state_counter, selected_robot_feedback_action)) + print("agent_assistance {}, attempt {}, game {}, agent_feedback {}".format(selected_agent_assistance_action, attempt_counter, game_state_counter, selected_agent_feedback_action)) ##########################QUERY FOR THE USER ACTION AND REACT TIME##################################### @@ -203,8 +203,8 @@ def simulation(bn_model_user_action, var_user_action_target_action, bn_model_use other_user_memory_name:other_user_memory_value, task_progress_name:game_state_counter, game_attempt_name:attempt_counter-1, - robot_assistance_name:selected_robot_assistance_action, - robot_feedback_name:selected_robot_feedback_action + agent_assistance_name:selected_agent_assistance_action, + agent_feedback_name:selected_agent_feedback_action } query_user_action_prob = bn_functions.infer_prob_from_state(bn_model_other_user_action, infer_variable=var_other_user_action_target_action, @@ -221,8 +221,8 @@ def simulation(bn_model_user_action, var_user_action_target_action, bn_model_use user_memory_name: user_memory_value, task_progress_name: game_state_counter, game_attempt_name: attempt_counter-1, - robot_assistance_name: selected_robot_assistance_action, - robot_feedback_name: selected_robot_feedback_action + agent_assistance_name: selected_agent_assistance_action, + agent_feedback_name: selected_agent_feedback_action } query_user_action_prob = bn_functions.infer_prob_from_state(bn_model_user_action, infer_variable=var_user_action_target_action, @@ -239,21 +239,21 @@ def simulation(bn_model_user_action, var_user_action_target_action, bn_model_use n_react_time_per_episode[e][selected_user_react_time] += 1 #updates counters for user action - robot_assistance_per_action[selected_user_action][selected_robot_assistance_action] += 1 + agent_assistance_per_action[selected_user_action][selected_agent_assistance_action] += 1 attempt_counter_per_action[selected_user_action][attempt_counter-1] += 1 game_state_counter_per_action[selected_user_action][game_state_counter] += 1 - robot_feedback_per_action[selected_user_action][selected_robot_feedback_action] += 1 + agent_feedback_per_action[selected_user_action][selected_agent_feedback_action] += 1 #update counter for user react time - robot_assistance_per_react_time[selected_user_react_time][selected_robot_assistance_action] += 1 + agent_assistance_per_react_time[selected_user_react_time][selected_agent_assistance_action] += 1 attempt_counter_per_react_time[selected_user_react_time][attempt_counter-1] += 1 game_state_counter_per_react_time[selected_user_react_time][game_state_counter] += 1 - robot_feedback_per_react_time[selected_user_react_time][selected_robot_feedback_action] += 1 - #update counter for robot feedback - game_state_counter_per_robot_feedback[selected_robot_feedback_action][game_state_counter] += 1 - attempt_counter_per_robot_feedback[selected_robot_feedback_action][attempt_counter-1] += 1 - #update counter for robot assistance - game_state_counter_per_robot_assistance[selected_robot_assistance_action][game_state_counter] += 1 - attempt_counter_per_robot_assistance[selected_robot_assistance_action][attempt_counter-1] += 1 + agent_feedback_per_react_time[selected_user_react_time][selected_agent_feedback_action] += 1 + #update counter for agent feedback + game_state_counter_per_agent_feedback[selected_agent_feedback_action][game_state_counter] += 1 + attempt_counter_per_agent_feedback[selected_agent_feedback_action][attempt_counter-1] += 1 + #update counter for agent assistance + game_state_counter_per_agent_assistance[selected_agent_assistance_action][game_state_counter] += 1 + attempt_counter_per_agent_assistance[selected_agent_assistance_action][attempt_counter-1] += 1 # updates counters for simulation # remap user_action index @@ -276,7 +276,7 @@ def simulation(bn_model_user_action, var_user_action_target_action, bn_model_use # store the (state, action, next_state) episode.append((ep.point_to_index(current_state, state_space), - ep.point_to_index(current_robot_action, action_space), + ep.point_to_index(current_agent_action, action_space), ep.point_to_index(next_state, state_space))) print("current_state ", current_state, " next_state ", next_state) @@ -284,10 +284,10 @@ def simulation(bn_model_user_action, var_user_action_target_action, bn_model_use print("game_state_counter {}, iter_counter {}, correct_counter {}, wrong_counter {}, " "timeout_counter {}, max_attempt {}".format(game_state_counter, iter_counter, correct_move_counter, wrong_move_counter, timeout_counter, max_attempt_counter)) - # print("robot_assistance_per_action {}".format(robot_assistance_per_action)) + # print("agent_assistance_per_action {}".format(agent_assistance_per_action)) # print("attempt_counter_per_action {}".format(attempt_counter_per_action)) # print("game_state_counter_per_action {}".format(game_state_counter_per_action)) - # print("robot_feedback_per_action {}".format(robot_feedback_per_action)) + # print("agent_feedback_per_action {}".format(agent_feedback_per_action)) # print("iter {}, correct {}, wrong {}, timeout {}".format(iter_counter, correct_move_counter, wrong_move_counter, timeout_counter)) #save episode @@ -296,14 +296,14 @@ def simulation(bn_model_user_action, var_user_action_target_action, bn_model_use #update user models bn_model_user_action = bn_functions.update_cpds_tables(bn_model_user_action, user_action_dynamic_variables) bn_model_user_react_time = bn_functions.update_cpds_tables(bn_model_user_react_time, user_react_time_dynamic_variables) - #update robot models - bn_model_robot_assistance = bn_functions.update_cpds_tables(bn_model_robot_assistance, robot_assistance_dynamic_variables) - bn_model_robot_feedback = bn_functions.update_cpds_tables(bn_model_robot_feedback, robot_feedback_dynamic_variables) + #update agent models + bn_model_agent_assistance = bn_functions.update_cpds_tables(bn_model_agent_assistance, agent_assistance_dynamic_variables) + bn_model_agent_feedback = bn_functions.update_cpds_tables(bn_model_agent_feedback, agent_feedback_dynamic_variables) #reset counter - robot_assistance_per_action = [[0 for i in range(Robot_Assistance.counter.value)] for j in + agent_assistance_per_action = [[0 for i in range(Agent_Assistance.counter.value)] for j in range(User_Action.counter.value)] - robot_feedback_per_action = [[0 for i in range(Robot_Feedback.counter.value)] for j in + agent_feedback_per_action = [[0 for i in range(Agent_Feedback.counter.value)] for j in range(User_Action.counter.value)] game_state_counter_per_action = [[0 for i in range(Game_State.counter.value)] for j in range(User_Action.counter.value)] @@ -314,20 +314,20 @@ def simulation(bn_model_user_action, var_user_action_target_action, bn_model_use range(User_React_time.counter.value)] game_state_counter_per_react_time = [[0 for i in range(Game_State.counter.value)] for j in range(User_React_time.counter.value)] - robot_feedback_per_react_time = [[0 for i in range(Robot_Feedback.counter.value)] for j in + agent_feedback_per_react_time = [[0 for i in range(Agent_Feedback.counter.value)] for j in range(User_React_time.counter.value)] - robot_assistance_per_react_time = [[0 for i in range(Robot_Assistance.counter.value)] for j in + agent_assistance_per_react_time = [[0 for i in range(Agent_Assistance.counter.value)] for j in range(User_React_time.counter.value)] - game_state_counter_per_robot_assistance = [[0 for i in range(Game_State.counter.value)] for j in - range(Robot_Assistance.counter.value)] - attempt_counter_per_robot_assistance = [[0 for i in range(Attempt.counter.value)] for j in - range(Robot_Assistance.counter.value)] + game_state_counter_per_agent_assistance = [[0 for i in range(Game_State.counter.value)] for j in + range(Agent_Assistance.counter.value)] + attempt_counter_per_agent_assistance = [[0 for i in range(Attempt.counter.value)] for j in + range(Agent_Assistance.counter.value)] - game_state_counter_per_robot_feedback = [[0 for i in range(Game_State.counter.value)] for j in - range(Robot_Feedback.counter.value)] - attempt_counter_per_robot_feedback = [[0 for i in range(Attempt.counter.value)] for j in - range(Robot_Feedback.counter.value)] + game_state_counter_per_agent_feedback = [[0 for i in range(Game_State.counter.value)] for j in + range(Agent_Feedback.counter.value)] + attempt_counter_per_agent_feedback = [[0 for i in range(Attempt.counter.value)] for j in + range(Agent_Feedback.counter.value)] #for plots n_correct_per_episode[e] = correct_move_counter @@ -351,12 +351,11 @@ def simulation(bn_model_user_action, var_user_action_target_action, bn_model_use ############################################################################# #SIMULATION PARAMS - epochs = 10 -#initialise the robot -bn_model_robot_assistance = bnlearn.import_DAG('bn_robot_model/robot_assistive_model.bif') -bn_model_robot_feedback = bnlearn.import_DAG('bn_robot_model/robot_feedback_model.bif') +#initialise the agent +bn_model_caregiver_assistance = bnlearn.import_DAG('bn_agent_model/agent_assistive_model.bif') +bn_model_caregiver_feedback = bnlearn.import_DAG('bn_agent_model/agent_feedback_model.bif') bn_model_user_action = bnlearn.import_DAG('bn_persona_model/user_action_model.bif') bn_model_user_react_time = bnlearn.import_DAG('bn_persona_model/user_react_time_model.bif') bn_model_other_user_action = None#bnlearn.import_DAG('bn_persona_model/other_user_action_model.bif') @@ -374,43 +373,68 @@ game_state = [i for i in range(0, Game_State.counter.value+1)] user_action = [i for i in range(-1, User_Action.counter.value-1)] state_space = (game_state, attempt, user_action) states_space_list = list(itertools.product(*state_space)) -robot_assistance_action = [i for i in range(Robot_Assistance.counter.value)] -robot_feedback_action = [i for i in range(Robot_Feedback.counter.value)] -action_space = (robot_assistance_action, robot_feedback_action) +agent_assistance_action = [i for i in range(Agent_Assistance.counter.value)] +agent_feedback_action = [i for i in range(Agent_Feedback.counter.value)] +action_space = (agent_assistance_action, agent_feedback_action) action_space_list = list(itertools.product(*action_space)) -game_performance_per_episode, react_time_per_episode, robot_assistance_per_episode, robot_feedback_per_episode, generated_episodes = \ -simulation(bn_model_user_action=bn_model_user_action, var_user_action_target_action=['user_action'], - bn_model_user_react_time=bn_model_user_react_time, var_user_react_time_target_action=['user_react_time'], - user_memory_name="memory", user_memory_value=persona_memory, - user_attention_name="attention", user_attention_value=persona_attention, - user_reactivity_name="reactivity", user_reactivity_value=persona_reactivity, - task_progress_name="game_state", game_attempt_name="attempt", - robot_assistance_name="robot_assistance", robot_feedback_name="robot_feedback", - bn_model_robot_assistance=bn_model_robot_assistance, var_robot_assistance_target_action=["robot_assistance"], - bn_model_robot_feedback=bn_model_robot_feedback, var_robot_feedback_target_action=["robot_feedback"], - bn_model_other_user_action=bn_model_other_user_action, var_other_user_action_target_action=['user_action'], - bn_model_other_user_react_time=bn_model_other_user_react_time, - var_other_user_target_react_time_action=["user_react_time"], other_user_memory_name="memory", - other_user_memory_value=other_user_memory, other_user_attention_name="attention", - other_user_attention_value=other_user_attention, other_user_reactivity_name="reactivity", - other_user_reactivity_value=other_user_reactivity, - state_space=states_space_list, action_space=action_space_list, - epochs=epochs, task_complexity=5, max_attempt_per_object=4) +##############BEFORE RUNNING THE SIMULATION UPDATE THE BELIEF IF YOU HAVE DATA#################### +bn_belief_user_action_file = "/home/pal/carf_ws/src/carf/caregiver_in_the_loop/log/0/bn_belief_user_action.pkl" +bn_belief_user_react_time_file = "/home/pal/carf_ws/src/carf/caregiver_in_the_loop/log/0/bn_belief_user_react_time.pkl" +bn_belief_caregiver_assistance_file = "/home/pal/carf_ws/src/carf/caregiver_in_the_loop/log/0/bn_belief_caregiver_assistive_action.pkl" +bn_belief_caregiver_feedback_file = "/home/pal/carf_ws/src/carf/caregiver_in_the_loop/log/0/bn_belief_caregiver_feedback_action.pkl" +if bn_belief_user_action_file != None and bn_belief_user_react_time_file!= None and \ + bn_belief_caregiver_assistance_file!=None and bn_belief_caregiver_feedback_file!=None: + bn_belief_user_action = utils.read_user_statistics_from_pickle(bn_belief_user_action_file) + bn_belief_user_react_time = utils.read_user_statistics_from_pickle(bn_belief_user_react_time_file) + bn_belief_caregiver_assistance = utils.read_user_statistics_from_pickle(bn_belief_caregiver_assistance_file) + bn_belief_caregiver_feedback = utils.read_user_statistics_from_pickle(bn_belief_caregiver_feedback_file) + bn_model_user_action = bn_functions.update_cpds_tables(bn_model=bn_model_user_action, variables_tables=bn_belief_user_action) + bn_model_user_react_time = bn_functions.update_cpds_tables(bn_model=bn_model_user_react_time, variables_tables=bn_belief_user_react_time) + bn_model_caregiver_assistance = bn_functions.update_cpds_tables(bn_model=bn_model_caregiver_assistance, variables_tables=bn_belief_caregiver_assistance) + bn_model_caregiver_feedback = bn_functions.update_cpds_tables(bn_model=bn_model_caregiver_feedback, variables_tables=bn_belief_caregiver_feedback) + + game_performance_per_episode, react_time_per_episode, agent_assistance_per_episode, agent_feedback_per_episode, generated_episodes = \ + simulation(bn_model_user_action=bn_model_user_action, var_user_action_target_action=['user_action'], + bn_model_user_react_time=bn_model_user_react_time, + var_user_react_time_target_action=['user_react_time'], + user_memory_name="memory", user_memory_value=persona_memory, + user_attention_name="attention", user_attention_value=persona_attention, + user_reactivity_name="reactivity", user_reactivity_value=persona_reactivity, + task_progress_name="game_state", game_attempt_name="attempt", + agent_assistance_name="agent_assistance", agent_feedback_name="agent_feedback", + bn_model_agent_assistance=bn_model_caregiver_assistance, + var_agent_assistance_target_action=["agent_assistance"], + bn_model_agent_feedback=bn_model_caregiver_feedback, var_agent_feedback_target_action=["agent_feedback"], + bn_model_other_user_action=bn_model_other_user_action, + var_other_user_action_target_action=['user_action'], + bn_model_other_user_react_time=bn_model_other_user_react_time, + var_other_user_target_react_time_action=["user_react_time"], other_user_memory_name="memory", + other_user_memory_value=other_user_memory, other_user_attention_name="attention", + other_user_attention_value=other_user_attention, other_user_reactivity_name="reactivity", + other_user_reactivity_value=other_user_reactivity, + state_space=states_space_list, action_space=action_space_list, + epochs=epochs, task_complexity=5, max_attempt_per_object=4) + +else: + assert("You're not using the user information") + question = raw_input("Are you sure you don't want to load user's belief information?") + + plot_game_performance_path = "" -plot_robot_assistance_path = "" +plot_agent_assistance_path = "" episodes_path = "episodes.npy" if bn_model_other_user_action != None: plot_game_performance_path = "game_performance_"+"_epoch_"+str(epochs)+"_real_user_memory_"+str(real_user_memory)+"_real_user_attention_"+str(real_user_attention)+"_real_user_reactivity_"+str(real_user_reactivity)+".jpg" - plot_robot_assistance_path = "robot_assistance_"+"epoch_"+str(epochs)+"_real_user_memory_"+str(real_user_memory)+"_real_user_attention_"+str(real_user_attention)+"_real_user_reactivity_"+str(real_user_reactivity)+".jpg" - plot_robot_feedback_path = "robot_feedback_"+"epoch_"+str(epochs)+"_real_user_memory_"+str(real_user_memory)+"_real_user_attention_"+str(real_user_attention)+"_real_user_reactivity_"+str(real_user_reactivity)+".jpg" + plot_agent_assistance_path = "agent_assistance_"+"epoch_"+str(epochs)+"_real_user_memory_"+str(real_user_memory)+"_real_user_attention_"+str(real_user_attention)+"_real_user_reactivity_"+str(real_user_reactivity)+".jpg" + plot_agent_feedback_path = "agent_feedback_"+"epoch_"+str(epochs)+"_real_user_memory_"+str(real_user_memory)+"_real_user_attention_"+str(real_user_attention)+"_real_user_reactivity_"+str(real_user_reactivity)+".jpg" else: plot_game_performance_path = "game_performance_"+"epoch_" + str(epochs) + "_persona_memory_" + str(persona_memory) + "_persona_attention_" + str(persona_attention) + "_persona_reactivity_" + str(persona_reactivity) + ".jpg" - plot_robot_assistance_path = "robot_assistance_"+"epoch_"+str(epochs)+"_persona_memory_"+str(persona_memory)+"_persona_attention_"+str(persona_attention)+"_persona_reactivity_"+str(persona_reactivity)+".jpg" - plot_robot_feedback_path = "robot_feedback_"+"epoch_"+str(epochs)+"_persona_memory_"+str(persona_memory)+"_persona_attention_"+str(persona_attention)+"_persona_reactivity_"+str(persona_reactivity)+".jpg" + plot_agent_assistance_path = "agent_assistance_"+"epoch_"+str(epochs)+"_persona_memory_"+str(persona_memory)+"_persona_attention_"+str(persona_attention)+"_persona_reactivity_"+str(persona_reactivity)+".jpg" + plot_agent_feedback_path = "agent_feedback_"+"epoch_"+str(epochs)+"_persona_memory_"+str(persona_memory)+"_persona_attention_"+str(persona_attention)+"_persona_reactivity_"+str(persona_reactivity)+".jpg" dir_name = input("Please insert the name of the directory:") full_path = os.getcwd()+"/results/"+dir_name+"/" @@ -430,8 +454,8 @@ with open(full_path+episodes_path, "ab") as f: utils.plot2D_game_performance(full_path+plot_game_performance_path, epochs, game_performance_per_episode) -utils.plot2D_assistance(full_path+plot_robot_assistance_path, epochs, robot_assistance_per_episode) -utils.plot2D_feedback(full_path+plot_robot_feedback_path, epochs, robot_feedback_per_episode) +utils.plot2D_assistance(full_path+plot_agent_assistance_path, epochs, agent_assistance_per_episode) +utils.plot2D_feedback(full_path+plot_agent_feedback_path, epochs, agent_feedback_per_episode) @@ -443,7 +467,7 @@ the episodes will be used to generate the trans probabilities and as input to th # - include reaction time as output # - average mistakes, average timeout, average assistance, average_react_time # - include real time episodes into the simulation: -# - counters for robot_assistance, robot_feedback, attempt, game_state, attention and reactivity +# - counters for agent_assistance, agent_feedback, attempt, game_state, attention and reactivity # - using the function update probability to generate the new user model and use it as input to the simulator -- GitLab